Step |
Hyp |
Ref |
Expression |
1 |
|
wuncn.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
wuncn.2 |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
3 |
|
df-c |
⊢ ℂ = ( R × R ) |
4 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
5 |
|
df-ni |
⊢ N = ( ω ∖ { ∅ } ) |
6 |
1 2
|
wundif |
⊢ ( 𝜑 → ( ω ∖ { ∅ } ) ∈ 𝑈 ) |
7 |
5 6
|
eqeltrid |
⊢ ( 𝜑 → N ∈ 𝑈 ) |
8 |
1 7 7
|
wunxp |
⊢ ( 𝜑 → ( N × N ) ∈ 𝑈 ) |
9 |
|
elpqn |
⊢ ( 𝑥 ∈ Q → 𝑥 ∈ ( N × N ) ) |
10 |
9
|
ssriv |
⊢ Q ⊆ ( N × N ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → Q ⊆ ( N × N ) ) |
12 |
1 8 11
|
wunss |
⊢ ( 𝜑 → Q ∈ 𝑈 ) |
13 |
1 12
|
wunpw |
⊢ ( 𝜑 → 𝒫 Q ∈ 𝑈 ) |
14 |
|
prpssnq |
⊢ ( 𝑥 ∈ P → 𝑥 ⊊ Q ) |
15 |
14
|
pssssd |
⊢ ( 𝑥 ∈ P → 𝑥 ⊆ Q ) |
16 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q ) |
17 |
15 16
|
sylibr |
⊢ ( 𝑥 ∈ P → 𝑥 ∈ 𝒫 Q ) |
18 |
17
|
ssriv |
⊢ P ⊆ 𝒫 Q |
19 |
18
|
a1i |
⊢ ( 𝜑 → P ⊆ 𝒫 Q ) |
20 |
1 13 19
|
wunss |
⊢ ( 𝜑 → P ∈ 𝑈 ) |
21 |
1 20 20
|
wunxp |
⊢ ( 𝜑 → ( P × P ) ∈ 𝑈 ) |
22 |
1 21
|
wunpw |
⊢ ( 𝜑 → 𝒫 ( P × P ) ∈ 𝑈 ) |
23 |
|
enrer |
⊢ ~R Er ( P × P ) |
24 |
23
|
a1i |
⊢ ( 𝜑 → ~R Er ( P × P ) ) |
25 |
24
|
qsss |
⊢ ( 𝜑 → ( ( P × P ) / ~R ) ⊆ 𝒫 ( P × P ) ) |
26 |
1 22 25
|
wunss |
⊢ ( 𝜑 → ( ( P × P ) / ~R ) ∈ 𝑈 ) |
27 |
4 26
|
eqeltrid |
⊢ ( 𝜑 → R ∈ 𝑈 ) |
28 |
1 27 27
|
wunxp |
⊢ ( 𝜑 → ( R × R ) ∈ 𝑈 ) |
29 |
3 28
|
eqeltrid |
⊢ ( 𝜑 → ℂ ∈ 𝑈 ) |