Metamath Proof Explorer


Theorem wuncnv

Description: A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
Assertion wuncnv ( 𝜑 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 1 2 wunrn ( 𝜑 → ran 𝐴𝑈 )
4 1 2 wundm ( 𝜑 → dom 𝐴𝑈 )
5 1 3 4 wunxp ( 𝜑 → ( ran 𝐴 × dom 𝐴 ) ∈ 𝑈 )
6 cnvssrndm 𝐴 ⊆ ( ran 𝐴 × dom 𝐴 )
7 6 a1i ( 𝜑 𝐴 ⊆ ( ran 𝐴 × dom 𝐴 ) )
8 1 5 7 wunss ( 𝜑 𝐴𝑈 )