| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 |  | wunop.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 3 |  | wunco.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑈 ) | 
						
							| 4 | 1 3 | wundm | ⊢ ( 𝜑  →  dom  𝐵  ∈  𝑈 ) | 
						
							| 5 |  | dmcoss | ⊢ dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵 ) | 
						
							| 7 | 1 4 6 | wunss | ⊢ ( 𝜑  →  dom  ( 𝐴  ∘  𝐵 )  ∈  𝑈 ) | 
						
							| 8 | 1 2 | wunrn | ⊢ ( 𝜑  →  ran  𝐴  ∈  𝑈 ) | 
						
							| 9 |  | rncoss | ⊢ ran  ( 𝐴  ∘  𝐵 )  ⊆  ran  𝐴 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ran  ( 𝐴  ∘  𝐵 )  ⊆  ran  𝐴 ) | 
						
							| 11 | 1 8 10 | wunss | ⊢ ( 𝜑  →  ran  ( 𝐴  ∘  𝐵 )  ∈  𝑈 ) | 
						
							| 12 | 1 7 11 | wunxp | ⊢ ( 𝜑  →  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∈  𝑈 ) | 
						
							| 13 |  | relco | ⊢ Rel  ( 𝐴  ∘  𝐵 ) | 
						
							| 14 |  | relssdmrn | ⊢ ( Rel  ( 𝐴  ∘  𝐵 )  →  ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) ) ) | 
						
							| 15 | 13 14 | mp1i | ⊢ ( 𝜑  →  ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) ) ) | 
						
							| 16 | 1 12 15 | wunss | ⊢ ( 𝜑  →  ( 𝐴  ∘  𝐵 )  ∈  𝑈 ) |