Description: The weak universe closure is a subset of any other weak universe containing the set. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | wuncss | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) → ( wUniCl ‘ 𝐴 ) ⊆ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ WUni ) → 𝐴 ∈ V ) | |
2 | 1 | ancoms | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) → 𝐴 ∈ V ) |
3 | wuncval | ⊢ ( 𝐴 ∈ V → ( wUniCl ‘ 𝐴 ) = ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) | |
4 | 2 3 | syl | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) → ( wUniCl ‘ 𝐴 ) = ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) |
5 | sseq2 | ⊢ ( 𝑢 = 𝑈 → ( 𝐴 ⊆ 𝑢 ↔ 𝐴 ⊆ 𝑈 ) ) | |
6 | 5 | intminss | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) → ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ⊆ 𝑈 ) |
7 | 4 6 | eqsstrd | ⊢ ( ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) → ( wUniCl ‘ 𝐴 ) ⊆ 𝑈 ) |