Metamath Proof Explorer


Theorem wundif

Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
Assertion wundif ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 difssd ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐴 )
4 1 2 3 wunss ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )