Metamath Proof Explorer
		
		
		
		Description:  The elements of a weak universe are also subsets of it.  (Contributed by Mario Carneiro, 2-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wununi.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
					
						|  |  | wununi.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
				
					|  | Assertion | wunelss | ⊢  ( 𝜑  →  𝐴  ⊆  𝑈 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wununi.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 |  | wununi.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 3 |  | wuntr | ⊢ ( 𝑈  ∈  WUni  →  Tr  𝑈 ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  Tr  𝑈 ) | 
						
							| 5 |  | trss | ⊢ ( Tr  𝑈  →  ( 𝐴  ∈  𝑈  →  𝐴  ⊆  𝑈 ) ) | 
						
							| 6 | 4 2 5 | sylc | ⊢ ( 𝜑  →  𝐴  ⊆  𝑈 ) |