Metamath Proof Explorer


Theorem wunelss

Description: The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
Assertion wunelss ( 𝜑𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 wuntr ( 𝑈 ∈ WUni → Tr 𝑈 )
4 1 3 syl ( 𝜑 → Tr 𝑈 )
5 trss ( Tr 𝑈 → ( 𝐴𝑈𝐴𝑈 ) )
6 4 2 5 sylc ( 𝜑𝐴𝑈 )