Metamath Proof Explorer
Description: The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wununi.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
|
|
wununi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
|
Assertion |
wunelss |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
wununi.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
wununi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
3 |
|
wuntr |
⊢ ( 𝑈 ∈ WUni → Tr 𝑈 ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → Tr 𝑈 ) |
5 |
|
trss |
⊢ ( Tr 𝑈 → ( 𝐴 ∈ 𝑈 → 𝐴 ⊆ 𝑈 ) ) |
6 |
4 2 5
|
sylc |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |