Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) |
2 |
|
eqid |
⊢ ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) = ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) |
3 |
1 2
|
wunex2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ WUni ∧ 𝐴 ⊆ ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ) ) |
4 |
|
sseq2 |
⊢ ( 𝑢 = ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) → ( 𝐴 ⊆ 𝑢 ↔ 𝐴 ⊆ ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ) ) |
5 |
4
|
rspcev |
⊢ ( ( ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ WUni ∧ 𝐴 ⊆ ∪ ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ) → ∃ 𝑢 ∈ WUni 𝐴 ⊆ 𝑢 ) |
6 |
3 5
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑢 ∈ WUni 𝐴 ⊆ 𝑢 ) |