Metamath Proof Explorer


Theorem wunex

Description: Construct a weak universe from a given set. See also wunex2 . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wunex ( 𝐴𝑉 → ∃ 𝑢 ∈ WUni 𝐴𝑢 )

Proof

Step Hyp Ref Expression
1 eqid ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω )
2 eqid ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) = ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω )
3 1 2 wunex2 ( 𝐴𝑉 → ( ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ WUni ∧ 𝐴 ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ) )
4 sseq2 ( 𝑢 = ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) → ( 𝐴𝑢𝐴 ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ) )
5 4 rspcev ( ( ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ WUni ∧ 𝐴 ran ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 𝑧 ) ∪ 𝑥𝑧 ( { 𝒫 𝑥 , 𝑥 } ∪ ran ( 𝑦𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ) → ∃ 𝑢 ∈ WUni 𝐴𝑢 )
6 3 5 syl ( 𝐴𝑉 → ∃ 𝑢 ∈ WUni 𝐴𝑢 )