| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω )  =  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω ) | 
						
							| 2 |  | eqid | ⊢ ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω )  =  ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω ) | 
						
							| 3 | 1 2 | wunex2 | ⊢ ( 𝐴  ∈  𝑉  →  ( ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω )  ∈  WUni  ∧  𝐴  ⊆  ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω ) ) ) | 
						
							| 4 |  | sseq2 | ⊢ ( 𝑢  =  ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω )  →  ( 𝐴  ⊆  𝑢  ↔  𝐴  ⊆  ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω ) ) ) | 
						
							| 5 | 4 | rspcev | ⊢ ( ( ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω )  ∈  WUni  ∧  𝐴  ⊆  ∪  ran  ( rec ( ( 𝑧  ∈  V  ↦  ( ( 𝑧  ∪  ∪  𝑧 )  ∪  ∪  𝑥  ∈  𝑧 ( { 𝒫  𝑥 ,  ∪  𝑥 }  ∪  ran  ( 𝑦  ∈  𝑧  ↦  { 𝑥 ,  𝑦 } ) ) ) ) ,  ( 𝐴  ∪  1o ) )  ↾  ω ) )  →  ∃ 𝑢  ∈  WUni 𝐴  ⊆  𝑢 ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑢  ∈  WUni 𝐴  ⊆  𝑢 ) |