| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunex2.f |
⊢ 𝐹 = ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) |
| 2 |
|
wunex2.u |
⊢ 𝑈 = ∪ ran 𝐹 |
| 3 |
2
|
eleq2i |
⊢ ( 𝑎 ∈ 𝑈 ↔ 𝑎 ∈ ∪ ran 𝐹 ) |
| 4 |
|
frfnom |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) Fn ω |
| 5 |
1
|
fneq1i |
⊢ ( 𝐹 Fn ω ↔ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) Fn ω ) |
| 6 |
4 5
|
mpbir |
⊢ 𝐹 Fn ω |
| 7 |
|
fnunirn |
⊢ ( 𝐹 Fn ω → ( 𝑎 ∈ ∪ ran 𝐹 ↔ ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 𝑎 ∈ ∪ ran 𝐹 ↔ ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) |
| 9 |
3 8
|
bitri |
⊢ ( 𝑎 ∈ 𝑈 ↔ ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) |
| 10 |
|
elssuni |
⊢ ( 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → 𝑎 ⊆ ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 11 |
10
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 12 |
|
ssun2 |
⊢ ∪ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 13 |
|
ssun1 |
⊢ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 14 |
12 13
|
sstri |
⊢ ∪ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 15 |
11 14
|
sstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 16 |
|
simprl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑚 ∈ ω ) |
| 17 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 18 |
17
|
uniex |
⊢ ∪ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 19 |
17 18
|
unex |
⊢ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∈ V |
| 20 |
|
prex |
⊢ { 𝒫 𝑢 , ∪ 𝑢 } ∈ V |
| 21 |
17
|
mptex |
⊢ ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 22 |
21
|
rnex |
⊢ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 23 |
20 22
|
unex |
⊢ ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 24 |
17 23
|
iunex |
⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 25 |
19 24
|
unex |
⊢ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V |
| 26 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
| 27 |
|
unieq |
⊢ ( 𝑤 = 𝑧 → ∪ 𝑤 = ∪ 𝑧 ) |
| 28 |
26 27
|
uneq12d |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∪ ∪ 𝑤 ) = ( 𝑧 ∪ ∪ 𝑧 ) ) |
| 29 |
|
pweq |
⊢ ( 𝑢 = 𝑥 → 𝒫 𝑢 = 𝒫 𝑥 ) |
| 30 |
|
unieq |
⊢ ( 𝑢 = 𝑥 → ∪ 𝑢 = ∪ 𝑥 ) |
| 31 |
29 30
|
preq12d |
⊢ ( 𝑢 = 𝑥 → { 𝒫 𝑢 , ∪ 𝑢 } = { 𝒫 𝑥 , ∪ 𝑥 } ) |
| 32 |
|
preq2 |
⊢ ( 𝑣 = 𝑦 → { 𝑢 , 𝑣 } = { 𝑢 , 𝑦 } ) |
| 33 |
32
|
cbvmptv |
⊢ ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑢 , 𝑦 } ) |
| 34 |
|
preq1 |
⊢ ( 𝑢 = 𝑥 → { 𝑢 , 𝑦 } = { 𝑥 , 𝑦 } ) |
| 35 |
34
|
mpteq2dv |
⊢ ( 𝑢 = 𝑥 → ( 𝑦 ∈ 𝑤 ↦ { 𝑢 , 𝑦 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 36 |
33 35
|
eqtrid |
⊢ ( 𝑢 = 𝑥 → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 37 |
36
|
rneqd |
⊢ ( 𝑢 = 𝑥 → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 38 |
31 37
|
uneq12d |
⊢ ( 𝑢 = 𝑥 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 39 |
38
|
cbviunv |
⊢ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑤 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) |
| 40 |
|
mpteq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) = ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) |
| 41 |
40
|
rneqd |
⊢ ( 𝑤 = 𝑧 → ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) = ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) |
| 42 |
41
|
uneq2d |
⊢ ( 𝑤 = 𝑧 → ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) = ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 43 |
26 42
|
iuneq12d |
⊢ ( 𝑤 = 𝑧 → ∪ 𝑥 ∈ 𝑤 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑤 ↦ { 𝑥 , 𝑦 } ) ) = ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 44 |
39 43
|
eqtrid |
⊢ ( 𝑤 = 𝑧 → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) |
| 45 |
28 44
|
uneq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) |
| 46 |
|
id |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → 𝑤 = ( 𝐹 ‘ 𝑚 ) ) |
| 47 |
|
unieq |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ∪ 𝑤 = ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 48 |
46 47
|
uneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( 𝑤 ∪ ∪ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ) |
| 49 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) |
| 50 |
49
|
rneqd |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) |
| 51 |
50
|
uneq2d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 52 |
46 51
|
iuneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 53 |
48 52
|
uneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑚 ) → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 54 |
1 45 53
|
frsucmpt2 |
⊢ ( ( 𝑚 ∈ ω ∧ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V ) → ( 𝐹 ‘ suc 𝑚 ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 55 |
16 25 54
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝐹 ‘ suc 𝑚 ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 56 |
15 55
|
sseqtrrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ ( 𝐹 ‘ suc 𝑚 ) ) |
| 57 |
|
fvssunirn |
⊢ ( 𝐹 ‘ suc 𝑚 ) ⊆ ∪ ran 𝐹 |
| 58 |
57 2
|
sseqtrri |
⊢ ( 𝐹 ‘ suc 𝑚 ) ⊆ 𝑈 |
| 59 |
56 58
|
sstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝑎 ⊆ 𝑈 ) |
| 60 |
59
|
rexlimdvaa |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → 𝑎 ⊆ 𝑈 ) ) |
| 61 |
9 60
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑎 ∈ 𝑈 → 𝑎 ⊆ 𝑈 ) ) |
| 62 |
61
|
ralrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑎 ∈ 𝑈 𝑎 ⊆ 𝑈 ) |
| 63 |
|
dftr3 |
⊢ ( Tr 𝑈 ↔ ∀ 𝑎 ∈ 𝑈 𝑎 ⊆ 𝑈 ) |
| 64 |
62 63
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → Tr 𝑈 ) |
| 65 |
|
1on |
⊢ 1o ∈ On |
| 66 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ On ) → ( 𝐴 ∪ 1o ) ∈ V ) |
| 67 |
65 66
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 1o ) ∈ V ) |
| 68 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ‘ ∅ ) |
| 69 |
|
fr0g |
⊢ ( ( 𝐴 ∪ 1o ) ∈ V → ( ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 70 |
68 69
|
eqtrid |
⊢ ( ( 𝐴 ∪ 1o ) ∈ V → ( 𝐹 ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 71 |
67 70
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ ∅ ) = ( 𝐴 ∪ 1o ) ) |
| 72 |
|
fvssunirn |
⊢ ( 𝐹 ‘ ∅ ) ⊆ ∪ ran 𝐹 |
| 73 |
72 2
|
sseqtrri |
⊢ ( 𝐹 ‘ ∅ ) ⊆ 𝑈 |
| 74 |
71 73
|
eqsstrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∪ 1o ) ⊆ 𝑈 ) |
| 75 |
74
|
unssbd |
⊢ ( 𝐴 ∈ 𝑉 → 1o ⊆ 𝑈 ) |
| 76 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 77 |
|
ssn0 |
⊢ ( ( 1o ⊆ 𝑈 ∧ 1o ≠ ∅ ) → 𝑈 ≠ ∅ ) |
| 78 |
75 76 77
|
sylancl |
⊢ ( 𝐴 ∈ 𝑉 → 𝑈 ≠ ∅ ) |
| 79 |
|
pweq |
⊢ ( 𝑢 = 𝑎 → 𝒫 𝑢 = 𝒫 𝑎 ) |
| 80 |
|
unieq |
⊢ ( 𝑢 = 𝑎 → ∪ 𝑢 = ∪ 𝑎 ) |
| 81 |
79 80
|
preq12d |
⊢ ( 𝑢 = 𝑎 → { 𝒫 𝑢 , ∪ 𝑢 } = { 𝒫 𝑎 , ∪ 𝑎 } ) |
| 82 |
|
preq1 |
⊢ ( 𝑢 = 𝑎 → { 𝑢 , 𝑣 } = { 𝑎 , 𝑣 } ) |
| 83 |
82
|
mpteq2dv |
⊢ ( 𝑢 = 𝑎 → ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) |
| 84 |
83
|
rneqd |
⊢ ( 𝑢 = 𝑎 → ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) |
| 85 |
81 84
|
uneq12d |
⊢ ( 𝑢 = 𝑎 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ) |
| 86 |
85
|
ssiun2s |
⊢ ( 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 87 |
86
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 88 |
|
ssun2 |
⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 89 |
88 55
|
sseqtrrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( 𝐹 ‘ suc 𝑚 ) ) |
| 90 |
89 58
|
sstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 91 |
87 90
|
sstrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 92 |
91
|
unssad |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → { 𝒫 𝑎 , ∪ 𝑎 } ⊆ 𝑈 ) |
| 93 |
|
vpwex |
⊢ 𝒫 𝑎 ∈ V |
| 94 |
|
vuniex |
⊢ ∪ 𝑎 ∈ V |
| 95 |
93 94
|
prss |
⊢ ( ( 𝒫 𝑎 ∈ 𝑈 ∧ ∪ 𝑎 ∈ 𝑈 ) ↔ { 𝒫 𝑎 , ∪ 𝑎 } ⊆ 𝑈 ) |
| 96 |
92 95
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝒫 𝑎 ∈ 𝑈 ∧ ∪ 𝑎 ∈ 𝑈 ) ) |
| 97 |
96
|
simprd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∪ 𝑎 ∈ 𝑈 ) |
| 98 |
96
|
simpld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → 𝒫 𝑎 ∈ 𝑈 ) |
| 99 |
2
|
eleq2i |
⊢ ( 𝑏 ∈ 𝑈 ↔ 𝑏 ∈ ∪ ran 𝐹 ) |
| 100 |
|
fnunirn |
⊢ ( 𝐹 Fn ω → ( 𝑏 ∈ ∪ ran 𝐹 ↔ ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 101 |
6 100
|
ax-mp |
⊢ ( 𝑏 ∈ ∪ ran 𝐹 ↔ ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 102 |
99 101
|
bitri |
⊢ ( 𝑏 ∈ 𝑈 ↔ ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 103 |
|
ordom |
⊢ Ord ω |
| 104 |
|
simplrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑚 ∈ ω ) |
| 105 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑛 ∈ ω ) |
| 106 |
|
ordunel |
⊢ ( ( Ord ω ∧ 𝑚 ∈ ω ∧ 𝑛 ∈ ω ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 107 |
103 104 105 106
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑚 ∪ 𝑛 ) ∈ ω ) |
| 108 |
|
ssun1 |
⊢ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) |
| 109 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 110 |
109
|
sseq2d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑚 ) ) ) |
| 111 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 112 |
111
|
sseq2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) |
| 113 |
|
fveq2 |
⊢ ( 𝑘 = suc 𝑖 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ suc 𝑖 ) ) |
| 114 |
113
|
sseq2d |
⊢ ( 𝑘 = suc 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 115 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑚 ∪ 𝑛 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 116 |
115
|
sseq2d |
⊢ ( 𝑘 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 117 |
|
ssidd |
⊢ ( 𝑚 ∈ ω → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑚 ) ) |
| 118 |
|
fveq2 |
⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 119 |
|
suceq |
⊢ ( 𝑚 = 𝑖 → suc 𝑚 = suc 𝑖 ) |
| 120 |
119
|
fveq2d |
⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ suc 𝑚 ) = ( 𝐹 ‘ suc 𝑖 ) ) |
| 121 |
118 120
|
sseq12d |
⊢ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑚 ) ↔ ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 122 |
|
ssun1 |
⊢ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) |
| 123 |
122 13
|
sstri |
⊢ ( 𝐹 ‘ 𝑚 ) ⊆ ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 124 |
25 54
|
mpan2 |
⊢ ( 𝑚 ∈ ω → ( 𝐹 ‘ suc 𝑚 ) = ( ( ( 𝐹 ‘ 𝑚 ) ∪ ∪ ( 𝐹 ‘ 𝑚 ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ 𝑚 ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ 𝑚 ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 125 |
123 124
|
sseqtrrid |
⊢ ( 𝑚 ∈ ω → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑚 ) ) |
| 126 |
121 125
|
vtoclga |
⊢ ( 𝑖 ∈ ω → ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) |
| 127 |
126
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) |
| 128 |
|
sstr2 |
⊢ ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) → ( ( 𝐹 ‘ 𝑖 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 129 |
127 128
|
syl5com |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ suc 𝑖 ) ) ) |
| 130 |
110 112 114 116 117 129
|
findsg |
⊢ ( ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ ( 𝑚 ∪ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 131 |
108 130
|
mpan2 |
⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ 𝑚 ∈ ω ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 132 |
107 104 131
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 133 |
|
simplrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) |
| 134 |
132 133
|
sseldd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑎 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 135 |
82
|
mpteq2dv |
⊢ ( 𝑢 = 𝑎 → ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 136 |
135
|
rneqd |
⊢ ( 𝑢 = 𝑎 → ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 137 |
81 136
|
uneq12d |
⊢ ( 𝑢 = 𝑎 → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ) |
| 138 |
137
|
ssiun2s |
⊢ ( 𝑎 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 139 |
134 138
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 140 |
|
ssun2 |
⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 141 |
|
fvex |
⊢ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 142 |
141
|
uniex |
⊢ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∈ V |
| 143 |
141 142
|
unex |
⊢ ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∈ V |
| 144 |
141
|
mptex |
⊢ ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 145 |
144
|
rnex |
⊢ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ∈ V |
| 146 |
20 145
|
unex |
⊢ ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 147 |
141 146
|
iunex |
⊢ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ∈ V |
| 148 |
143 147
|
unex |
⊢ ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V |
| 149 |
|
id |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 150 |
|
unieq |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ∪ 𝑤 = ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 151 |
149 150
|
uneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑤 ∪ ∪ 𝑤 ) = ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 152 |
|
mpteq1 |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) |
| 153 |
152
|
rneqd |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) = ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) |
| 154 |
153
|
uneq2d |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 155 |
149 154
|
iuneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) = ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) |
| 156 |
151 155
|
uneq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) → ( ( 𝑤 ∪ ∪ 𝑤 ) ∪ ∪ 𝑢 ∈ 𝑤 ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ 𝑤 ↦ { 𝑢 , 𝑣 } ) ) ) = ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 157 |
1 45 156
|
frsucmpt2 |
⊢ ( ( ( 𝑚 ∪ 𝑛 ) ∈ ω ∧ ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ∈ V ) → ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 158 |
107 148 157
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) = ( ( ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∪ ∪ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ∪ ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ) ) |
| 159 |
140 158
|
sseqtrrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) ) |
| 160 |
|
fvssunirn |
⊢ ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ ∪ ran 𝐹 |
| 161 |
160 2
|
sseqtrri |
⊢ ( 𝐹 ‘ suc ( 𝑚 ∪ 𝑛 ) ) ⊆ 𝑈 |
| 162 |
159 161
|
sstrdi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∪ 𝑢 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ( { 𝒫 𝑢 , ∪ 𝑢 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑢 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 163 |
139 162
|
sstrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( { 𝒫 𝑎 , ∪ 𝑎 } ∪ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) ⊆ 𝑈 ) |
| 164 |
163
|
unssbd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ⊆ 𝑈 ) |
| 165 |
|
ssun2 |
⊢ 𝑛 ⊆ ( 𝑚 ∪ 𝑛 ) |
| 166 |
|
id |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → 𝑖 = ( 𝑚 ∪ 𝑛 ) ) |
| 167 |
165 166
|
sseqtrrid |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → 𝑛 ⊆ 𝑖 ) |
| 168 |
167
|
biantrud |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( 𝑛 ∈ ω ↔ ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) ) ) |
| 169 |
168
|
bicomd |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) ↔ 𝑛 ∈ ω ) ) |
| 170 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 171 |
170
|
sseq2d |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ↔ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 172 |
169 171
|
imbi12d |
⊢ ( 𝑖 = ( 𝑚 ∪ 𝑛 ) → ( ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ↔ ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) ) |
| 173 |
|
eleq1w |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ω ↔ 𝑛 ∈ ω ) ) |
| 174 |
173
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ↔ ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ) ) |
| 175 |
|
sseq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ⊆ 𝑖 ↔ 𝑛 ⊆ 𝑖 ) ) |
| 176 |
174 175
|
anbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) ↔ ( ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑛 ⊆ 𝑖 ) ) ) |
| 177 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 178 |
177
|
sseq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ↔ ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) |
| 179 |
176 178
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ↔ ( ( ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 180 |
110 112 114 112 117 129
|
findsg |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑚 ∈ ω ) ∧ 𝑚 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑚 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) |
| 181 |
179 180
|
chvarvv |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑛 ∈ ω ) ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) |
| 182 |
181
|
expl |
⊢ ( 𝑖 ∈ ω → ( ( 𝑛 ∈ ω ∧ 𝑛 ⊆ 𝑖 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ 𝑖 ) ) ) |
| 183 |
172 182
|
vtoclga |
⊢ ( ( 𝑚 ∪ 𝑛 ) ∈ ω → ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) ) |
| 184 |
107 105 183
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 185 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) |
| 186 |
184 185
|
sseldd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → 𝑏 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ) |
| 187 |
|
prex |
⊢ { 𝑎 , 𝑏 } ∈ V |
| 188 |
|
eqid |
⊢ ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) = ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) |
| 189 |
|
preq2 |
⊢ ( 𝑣 = 𝑏 → { 𝑎 , 𝑣 } = { 𝑎 , 𝑏 } ) |
| 190 |
188 189
|
elrnmpt1s |
⊢ ( ( 𝑏 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ∧ { 𝑎 , 𝑏 } ∈ V ) → { 𝑎 , 𝑏 } ∈ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 191 |
186 187 190
|
sylancl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → { 𝑎 , 𝑏 } ∈ ran ( 𝑣 ∈ ( 𝐹 ‘ ( 𝑚 ∪ 𝑛 ) ) ↦ { 𝑎 , 𝑣 } ) ) |
| 192 |
164 191
|
sseldd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ω ∧ 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → { 𝑎 , 𝑏 } ∈ 𝑈 ) |
| 193 |
192
|
rexlimdvaa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ω 𝑏 ∈ ( 𝐹 ‘ 𝑛 ) → { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 194 |
102 193
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( 𝑏 ∈ 𝑈 → { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 195 |
194
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) |
| 196 |
97 98 195
|
3jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑚 ∈ ω ∧ 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) ) ) → ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 197 |
196
|
rexlimdvaa |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑚 ∈ ω 𝑎 ∈ ( 𝐹 ‘ 𝑚 ) → ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) |
| 198 |
9 197
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑎 ∈ 𝑈 → ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) |
| 199 |
198
|
ralrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑎 ∈ 𝑈 ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) |
| 200 |
|
rdgfun |
⊢ Fun rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) |
| 201 |
|
omex |
⊢ ω ∈ V |
| 202 |
|
resfunexg |
⊢ ( ( Fun rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ∧ ω ∈ V ) → ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ V ) |
| 203 |
200 201 202
|
mp2an |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( ( 𝑧 ∪ ∪ 𝑧 ) ∪ ∪ 𝑥 ∈ 𝑧 ( { 𝒫 𝑥 , ∪ 𝑥 } ∪ ran ( 𝑦 ∈ 𝑧 ↦ { 𝑥 , 𝑦 } ) ) ) ) , ( 𝐴 ∪ 1o ) ) ↾ ω ) ∈ V |
| 204 |
1 203
|
eqeltri |
⊢ 𝐹 ∈ V |
| 205 |
204
|
rnex |
⊢ ran 𝐹 ∈ V |
| 206 |
205
|
uniex |
⊢ ∪ ran 𝐹 ∈ V |
| 207 |
2 206
|
eqeltri |
⊢ 𝑈 ∈ V |
| 208 |
|
iswun |
⊢ ( 𝑈 ∈ V → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝑈 ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) ) |
| 209 |
207 208
|
ax-mp |
⊢ ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝑈 ( ∪ 𝑎 ∈ 𝑈 ∧ 𝒫 𝑎 ∈ 𝑈 ∧ ∀ 𝑏 ∈ 𝑈 { 𝑎 , 𝑏 } ∈ 𝑈 ) ) ) |
| 210 |
64 78 199 209
|
syl3anbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝑈 ∈ WUni ) |
| 211 |
74
|
unssad |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈 ) |
| 212 |
210 211
|
jca |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |