Step |
Hyp |
Ref |
Expression |
1 |
|
wunex3.u |
⊢ 𝑈 = ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) |
2 |
|
r1rankid |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
3 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
oacl |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ ω ∈ On ) → ( ( rank ‘ 𝐴 ) +o ω ) ∈ On ) |
6 |
3 4 5
|
mp2an |
⊢ ( ( rank ‘ 𝐴 ) +o ω ) ∈ On |
7 |
|
peano1 |
⊢ ∅ ∈ ω |
8 |
|
oaord1 |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ ω ∈ On ) → ( ∅ ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) ) ) |
9 |
3 4 8
|
mp2an |
⊢ ( ∅ ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) ) |
10 |
7 9
|
mpbi |
⊢ ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) |
11 |
|
r1ord2 |
⊢ ( ( ( rank ‘ 𝐴 ) +o ω ) ∈ On → ( ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) ) ) |
12 |
6 10 11
|
mp2 |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) |
13 |
12 1
|
sseqtrri |
⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ 𝑈 |
14 |
2 13
|
sstrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈 ) |
15 |
|
limom |
⊢ Lim ω |
16 |
4 15
|
pm3.2i |
⊢ ( ω ∈ On ∧ Lim ω ) |
17 |
|
oalimcl |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) → Lim ( ( rank ‘ 𝐴 ) +o ω ) ) |
18 |
3 16 17
|
mp2an |
⊢ Lim ( ( rank ‘ 𝐴 ) +o ω ) |
19 |
|
r1limwun |
⊢ ( ( ( ( rank ‘ 𝐴 ) +o ω ) ∈ On ∧ Lim ( ( rank ‘ 𝐴 ) +o ω ) ) → ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) ∈ WUni ) |
20 |
6 18 19
|
mp2an |
⊢ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) ∈ WUni |
21 |
1 20
|
eqeltri |
⊢ 𝑈 ∈ WUni |
22 |
14 21
|
jctil |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |