Metamath Proof Explorer


Theorem wunf

Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
wunop.3 ( 𝜑𝐵𝑈 )
wunf.3 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion wunf ( 𝜑𝐹𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 wunop.3 ( 𝜑𝐵𝑈 )
4 wunf.3 ( 𝜑𝐹 : 𝐴𝐵 )
5 1 3 2 wunmap ( 𝜑 → ( 𝐵m 𝐴 ) ∈ 𝑈 )
6 1 5 wunelss ( 𝜑 → ( 𝐵m 𝐴 ) ⊆ 𝑈 )
7 3 2 elmapd ( 𝜑 → ( 𝐹 ∈ ( 𝐵m 𝐴 ) ↔ 𝐹 : 𝐴𝐵 ) )
8 4 7 mpbird ( 𝜑𝐹 ∈ ( 𝐵m 𝐴 ) )
9 6 8 sseldd ( 𝜑𝐹𝑈 )