Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
wunfi.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
3 |
|
wunfi.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝑈 ↔ ∅ ⊆ 𝑈 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) ) |
6 |
4 5
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( ∅ ⊆ 𝑈 → ∅ ∈ 𝑈 ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝑈 → ∅ ∈ 𝑈 ) ) ) ) |
8 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝑈 ↔ 𝑦 ⊆ 𝑈 ) ) |
9 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈 ) ) |
10 |
8 9
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) ) ) |
12 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝑈 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ) ) |
13 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑈 ↔ ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) |
14 |
12 13
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) ) |
16 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑈 ↔ 𝐴 ⊆ 𝑈 ) ) |
17 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) ) |
20 |
1
|
wun0 |
⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
21 |
20
|
a1d |
⊢ ( 𝜑 → ( ∅ ⊆ 𝑈 → ∅ ∈ 𝑈 ) ) |
22 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
23 |
|
sstr |
⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ) → 𝑦 ⊆ 𝑈 ) |
24 |
22 23
|
mpan |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → 𝑦 ⊆ 𝑈 ) |
25 |
24
|
imim1i |
⊢ ( ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) |
26 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑈 ∈ WUni ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ) |
29 |
28
|
unssbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → { 𝑧 } ⊆ 𝑈 ) |
30 |
|
vex |
⊢ 𝑧 ∈ V |
31 |
30
|
snss |
⊢ ( 𝑧 ∈ 𝑈 ↔ { 𝑧 } ⊆ 𝑈 ) |
32 |
29 31
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
33 |
26 32
|
wunsn |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → { 𝑧 } ∈ 𝑈 ) |
34 |
26 27 33
|
wunun |
⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) |
35 |
34
|
exp32 |
⊢ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∈ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
36 |
35
|
a2d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
37 |
25 36
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
38 |
37
|
a2i |
⊢ ( ( 𝜑 → ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
39 |
38
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ( 𝜑 → ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) ) |
40 |
7 11 15 19 21 39
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
41 |
3 40
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) |
42 |
2 41
|
mpd |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |