Metamath Proof Explorer


Theorem wunfv

Description: A weak universe is closed under the function value operator. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
Assertion wunfv ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 1 2 wunrn ( 𝜑 → ran 𝐴𝑈 )
4 1 3 wununi ( 𝜑 ran 𝐴𝑈 )
5 fvssunirn ( 𝐴𝐵 ) ⊆ ran 𝐴
6 5 a1i ( 𝜑 → ( 𝐴𝐵 ) ⊆ ran 𝐴 )
7 1 4 6 wunss ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )