Metamath Proof Explorer


Theorem wunin

Description: A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
Assertion wunin ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
4 3 a1i ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐴 )
5 1 2 4 wunss ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )