Metamath Proof Explorer


Theorem wunint

Description: A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
Assertion wunint ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 1 adantr ( ( 𝜑𝐴 ≠ ∅ ) → 𝑈 ∈ WUni )
4 1 2 wununi ( 𝜑 𝐴𝑈 )
5 4 adantr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴𝑈 )
6 intssuni ( 𝐴 ≠ ∅ → 𝐴 𝐴 )
7 6 adantl ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴 𝐴 )
8 3 5 7 wunss ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴𝑈 )