Metamath Proof Explorer


Theorem wunmap

Description: A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
wunop.3 ( 𝜑𝐵𝑈 )
Assertion wunmap ( 𝜑 → ( 𝐴m 𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 wunop.3 ( 𝜑𝐵𝑈 )
4 1 2 3 wunpm ( 𝜑 → ( 𝐴pm 𝐵 ) ∈ 𝑈 )
5 mapsspm ( 𝐴m 𝐵 ) ⊆ ( 𝐴pm 𝐵 )
6 5 a1i ( 𝜑 → ( 𝐴m 𝐵 ) ⊆ ( 𝐴pm 𝐵 ) )
7 1 4 6 wunss ( 𝜑 → ( 𝐴m 𝐵 ) ∈ 𝑈 )