Metamath Proof Explorer
Description: A weak universe is closed under mappings. (Contributed by Mario
Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wun0.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
|
|
wunop.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
|
|
wunop.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
|
Assertion |
wunmap |
⊢ ( 𝜑 → ( 𝐴 ↑m 𝐵 ) ∈ 𝑈 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wun0.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 2 |
|
wunop.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 3 |
|
wunop.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
| 4 |
1 2 3
|
wunpm |
⊢ ( 𝜑 → ( 𝐴 ↑pm 𝐵 ) ∈ 𝑈 ) |
| 5 |
|
mapsspm |
⊢ ( 𝐴 ↑m 𝐵 ) ⊆ ( 𝐴 ↑pm 𝐵 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ↑m 𝐵 ) ⊆ ( 𝐴 ↑pm 𝐵 ) ) |
| 7 |
1 4 6
|
wunss |
⊢ ( 𝜑 → ( 𝐴 ↑m 𝐵 ) ∈ 𝑈 ) |