Metamath Proof Explorer
Description: Closure of the index extractor in an infinite weak universe.
(Contributed by Mario Carneiro, 12-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wunndx.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
|
|
wunndx.2 |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
|
Assertion |
wunndx |
⊢ ( 𝜑 → ndx ∈ 𝑈 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunndx.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 2 |
|
wunndx.2 |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
| 3 |
|
df-ndx |
⊢ ndx = ( I ↾ ℕ ) |
| 4 |
1 2
|
wuncn |
⊢ ( 𝜑 → ℂ ∈ 𝑈 ) |
| 5 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ℕ ⊆ ℂ ) |
| 7 |
1 4 6
|
wunss |
⊢ ( 𝜑 → ℕ ∈ 𝑈 ) |
| 8 |
|
f1oi |
⊢ ( I ↾ ℕ ) : ℕ –1-1-onto→ ℕ |
| 9 |
|
f1of |
⊢ ( ( I ↾ ℕ ) : ℕ –1-1-onto→ ℕ → ( I ↾ ℕ ) : ℕ ⟶ ℕ ) |
| 10 |
8 9
|
mp1i |
⊢ ( 𝜑 → ( I ↾ ℕ ) : ℕ ⟶ ℕ ) |
| 11 |
1 7 7 10
|
wunf |
⊢ ( 𝜑 → ( I ↾ ℕ ) ∈ 𝑈 ) |
| 12 |
3 11
|
eqeltrid |
⊢ ( 𝜑 → ndx ∈ 𝑈 ) |