Step |
Hyp |
Ref |
Expression |
1 |
|
wun0.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑈 ∈ WUni ) |
3 |
1
|
wunr1om |
⊢ ( 𝜑 → ( 𝑅1 “ ω ) ⊆ 𝑈 ) |
4 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
5 |
4
|
simpli |
⊢ Fun 𝑅1 |
6 |
4
|
simpri |
⊢ Lim dom 𝑅1 |
7 |
|
limomss |
⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) |
8 |
6 7
|
ax-mp |
⊢ ω ⊆ dom 𝑅1 |
9 |
|
funimass4 |
⊢ ( ( Fun 𝑅1 ∧ ω ⊆ dom 𝑅1 ) → ( ( 𝑅1 “ ω ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) |
10 |
5 8 9
|
mp2an |
⊢ ( ( 𝑅1 “ ω ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
11 |
3 10
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
12 |
11
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ∈ ω ) |
14 |
8 13
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ∈ dom 𝑅1 ) |
15 |
|
onssr1 |
⊢ ( 𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
17 |
2 12 16
|
wunss |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ∈ 𝑈 ) |
18 |
17
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ω → 𝑥 ∈ 𝑈 ) ) |
19 |
18
|
ssrdv |
⊢ ( 𝜑 → ω ⊆ 𝑈 ) |