Metamath Proof Explorer


Theorem wunot

Description: A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
wunop.3 ( 𝜑𝐵𝑈 )
wunot.3 ( 𝜑𝐶𝑈 )
Assertion wunot ( 𝜑 → ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 wunop.3 ( 𝜑𝐵𝑈 )
4 wunot.3 ( 𝜑𝐶𝑈 )
5 df-ot 𝐴 , 𝐵 , 𝐶 ⟩ = ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶
6 1 2 3 wunop ( 𝜑 → ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑈 )
7 1 6 4 wunop ( 𝜑 → ⟨ ⟨ 𝐴 , 𝐵 ⟩ , 𝐶 ⟩ ∈ 𝑈 )
8 5 7 eqeltrid ( 𝜑 → ⟨ 𝐴 , 𝐵 , 𝐶 ⟩ ∈ 𝑈 )