Step |
Hyp |
Ref |
Expression |
1 |
|
wununi.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
wununi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
3 |
|
wunpr.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
4 |
|
iswun |
⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
5 |
4
|
ibi |
⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
6 |
5
|
simp3d |
⊢ ( 𝑈 ∈ WUni → ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
7 |
|
simp3 |
⊢ ( ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
9 |
1 6 8
|
3syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
10 |
|
preq1 |
⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝑦 } = { 𝐴 , 𝑦 } ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝑦 } ∈ 𝑈 ↔ { 𝐴 , 𝑦 } ∈ 𝑈 ) ) |
12 |
|
preq2 |
⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) |
13 |
12
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } ∈ 𝑈 ↔ { 𝐴 , 𝐵 } ∈ 𝑈 ) ) |
14 |
11 13
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
15 |
2 3 9 14
|
syl21anc |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |