| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wununi.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 2 |
|
wununi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 3 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
| 4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ 𝑈 ↔ 𝒫 𝐴 ∈ 𝑈 ) ) |
| 5 |
|
iswun |
⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
| 6 |
5
|
ibi |
⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
| 7 |
6
|
simp3d |
⊢ ( 𝑈 ∈ WUni → ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
| 8 |
|
simp2 |
⊢ ( ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → 𝒫 𝑥 ∈ 𝑈 ) |
| 9 |
8
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈 ) |
| 10 |
1 7 9
|
3syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 𝒫 𝑥 ∈ 𝑈 ) |
| 11 |
4 10 2
|
rspcdva |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ 𝑈 ) |