| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wun0.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑅1 ‘ 𝑥 )  =  ( 𝑅1 ‘ ∅ ) ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑅1 ‘ 𝑥 )  ∈  𝑈  ↔  ( 𝑅1 ‘ ∅ )  ∈  𝑈 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑅1 ‘ 𝑥 )  =  ( 𝑅1 ‘ 𝑦 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑅1 ‘ 𝑥 )  ∈  𝑈  ↔  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑅1 ‘ 𝑥 )  =  ( 𝑅1 ‘ suc  𝑦 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑥  =  suc  𝑦  →  ( ( 𝑅1 ‘ 𝑥 )  ∈  𝑈  ↔  ( 𝑅1 ‘ suc  𝑦 )  ∈  𝑈 ) ) | 
						
							| 8 |  | r10 | ⊢ ( 𝑅1 ‘ ∅ )  =  ∅ | 
						
							| 9 | 1 | wun0 | ⊢ ( 𝜑  →  ∅  ∈  𝑈 ) | 
						
							| 10 | 8 9 | eqeltrid | ⊢ ( 𝜑  →  ( 𝑅1 ‘ ∅ )  ∈  𝑈 ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 )  →  𝑈  ∈  WUni ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 )  →  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 ) | 
						
							| 13 | 11 12 | wunpw | ⊢ ( ( 𝜑  ∧  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 )  →  𝒫  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 ) | 
						
							| 14 |  | nnon | ⊢ ( 𝑦  ∈  ω  →  𝑦  ∈  On ) | 
						
							| 15 |  | r1suc | ⊢ ( 𝑦  ∈  On  →  ( 𝑅1 ‘ suc  𝑦 )  =  𝒫  ( 𝑅1 ‘ 𝑦 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑦  ∈  ω  →  ( 𝑅1 ‘ suc  𝑦 )  =  𝒫  ( 𝑅1 ‘ 𝑦 ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑦  ∈  ω  →  ( ( 𝑅1 ‘ suc  𝑦 )  ∈  𝑈  ↔  𝒫  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 ) ) | 
						
							| 18 | 13 17 | imbitrrid | ⊢ ( 𝑦  ∈  ω  →  ( ( 𝜑  ∧  ( 𝑅1 ‘ 𝑦 )  ∈  𝑈 )  →  ( 𝑅1 ‘ suc  𝑦 )  ∈  𝑈 ) ) | 
						
							| 19 | 18 | expd | ⊢ ( 𝑦  ∈  ω  →  ( 𝜑  →  ( ( 𝑅1 ‘ 𝑦 )  ∈  𝑈  →  ( 𝑅1 ‘ suc  𝑦 )  ∈  𝑈 ) ) ) | 
						
							| 20 | 3 5 7 10 19 | finds2 | ⊢ ( 𝑥  ∈  ω  →  ( 𝜑  →  ( 𝑅1 ‘ 𝑥 )  ∈  𝑈 ) ) | 
						
							| 21 |  | eleq1 | ⊢ ( ( 𝑅1 ‘ 𝑥 )  =  𝑦  →  ( ( 𝑅1 ‘ 𝑥 )  ∈  𝑈  ↔  𝑦  ∈  𝑈 ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( ( 𝑅1 ‘ 𝑥 )  =  𝑦  →  ( ( 𝜑  →  ( 𝑅1 ‘ 𝑥 )  ∈  𝑈 )  ↔  ( 𝜑  →  𝑦  ∈  𝑈 ) ) ) | 
						
							| 23 | 20 22 | syl5ibcom | ⊢ ( 𝑥  ∈  ω  →  ( ( 𝑅1 ‘ 𝑥 )  =  𝑦  →  ( 𝜑  →  𝑦  ∈  𝑈 ) ) ) | 
						
							| 24 | 23 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  ω ( 𝑅1 ‘ 𝑥 )  =  𝑦  →  ( 𝜑  →  𝑦  ∈  𝑈 ) ) | 
						
							| 25 |  | r1fnon | ⊢ 𝑅1  Fn  On | 
						
							| 26 |  | fnfun | ⊢ ( 𝑅1  Fn  On  →  Fun  𝑅1 ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ Fun  𝑅1 | 
						
							| 28 |  | fvelima | ⊢ ( ( Fun  𝑅1  ∧  𝑦  ∈  ( 𝑅1  “  ω ) )  →  ∃ 𝑥  ∈  ω ( 𝑅1 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 29 | 27 28 | mpan | ⊢ ( 𝑦  ∈  ( 𝑅1  “  ω )  →  ∃ 𝑥  ∈  ω ( 𝑅1 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 30 | 24 29 | syl11 | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑅1  “  ω )  →  𝑦  ∈  𝑈 ) ) | 
						
							| 31 | 30 | ssrdv | ⊢ ( 𝜑  →  ( 𝑅1  “  ω )  ⊆  𝑈 ) |