Metamath Proof Explorer


Theorem wunres

Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
Assertion wunres ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 resss ( 𝐴𝐵 ) ⊆ 𝐴
4 3 a1i ( 𝜑 → ( 𝐴𝐵 ) ⊆ 𝐴 )
5 1 2 4 wunss ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )