| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wunress.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 2 |
|
wunress.2 |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
| 3 |
|
wunress.3 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑈 ) |
| 4 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
4 5
|
ressval |
⊢ ( ( 𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
| 7 |
3 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
| 8 |
1 2
|
basndxelwund |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 ) |
| 9 |
|
incom |
⊢ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) |
| 10 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 11 |
10 1 3
|
wunstr |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ∈ 𝑈 ) |
| 12 |
1 11
|
wunin |
⊢ ( 𝜑 → ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ∈ 𝑈 ) |
| 13 |
9 12
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∈ 𝑈 ) |
| 14 |
1 8 13
|
wunop |
⊢ ( 𝜑 → 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ∈ 𝑈 ) |
| 15 |
1 3 14
|
wunsets |
⊢ ( 𝜑 → ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ∈ 𝑈 ) |
| 16 |
3 15
|
ifcld |
⊢ ( 𝜑 → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ∈ 𝑈 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ∈ 𝑈 ) |
| 18 |
7 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |
| 19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) ) |
| 20 |
1
|
wun0 |
⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
| 21 |
|
reldmress |
⊢ Rel dom ↾s |
| 22 |
21
|
ovprc2 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 23 |
22
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) ) |
| 24 |
20 23
|
syl5ibrcom |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) ) |
| 25 |
19 24
|
pm2.61d |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |