| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wunress.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 |  | wunress.2 | ⊢ ( 𝜑  →  ω  ∈  𝑈 ) | 
						
							| 3 |  | wunress.3 | ⊢ ( 𝜑  →  𝑊  ∈  𝑈 ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑊  ↾s  𝐴 )  =  ( 𝑊  ↾s  𝐴 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 6 | 4 5 | ressval | ⊢ ( ( 𝑊  ∈  𝑈  ∧  𝐴  ∈  V )  →  ( 𝑊  ↾s  𝐴 )  =  if ( ( Base ‘ 𝑊 )  ⊆  𝐴 ,  𝑊 ,  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) ) ) | 
						
							| 7 | 3 6 | sylan | ⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  ( 𝑊  ↾s  𝐴 )  =  if ( ( Base ‘ 𝑊 )  ⊆  𝐴 ,  𝑊 ,  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) ) ) | 
						
							| 8 |  | df-base | ⊢ Base  =  Slot  1 | 
						
							| 9 | 1 2 | wunndx | ⊢ ( 𝜑  →  ndx  ∈  𝑈 ) | 
						
							| 10 | 8 1 9 | wunstr | ⊢ ( 𝜑  →  ( Base ‘ ndx )  ∈  𝑈 ) | 
						
							| 11 |  | incom | ⊢ ( 𝐴  ∩  ( Base ‘ 𝑊 ) )  =  ( ( Base ‘ 𝑊 )  ∩  𝐴 ) | 
						
							| 12 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 13 | 12 1 3 | wunstr | ⊢ ( 𝜑  →  ( Base ‘ 𝑊 )  ∈  𝑈 ) | 
						
							| 14 | 1 13 | wunin | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑊 )  ∩  𝐴 )  ∈  𝑈 ) | 
						
							| 15 | 11 14 | eqeltrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( Base ‘ 𝑊 ) )  ∈  𝑈 ) | 
						
							| 16 | 1 10 15 | wunop | ⊢ ( 𝜑  →  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉  ∈  𝑈 ) | 
						
							| 17 | 1 3 16 | wunsets | ⊢ ( 𝜑  →  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 )  ∈  𝑈 ) | 
						
							| 18 | 3 17 | ifcld | ⊢ ( 𝜑  →  if ( ( Base ‘ 𝑊 )  ⊆  𝐴 ,  𝑊 ,  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) )  ∈  𝑈 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  if ( ( Base ‘ 𝑊 )  ⊆  𝐴 ,  𝑊 ,  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) )  ∈  𝑈 ) | 
						
							| 20 | 7 19 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  V )  →  ( 𝑊  ↾s  𝐴 )  ∈  𝑈 ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝜑  →  ( 𝐴  ∈  V  →  ( 𝑊  ↾s  𝐴 )  ∈  𝑈 ) ) | 
						
							| 22 | 1 | wun0 | ⊢ ( 𝜑  →  ∅  ∈  𝑈 ) | 
						
							| 23 |  | reldmress | ⊢ Rel  dom   ↾s | 
						
							| 24 | 23 | ovprc2 | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝑊  ↾s  𝐴 )  =  ∅ ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( ¬  𝐴  ∈  V  →  ( ( 𝑊  ↾s  𝐴 )  ∈  𝑈  ↔  ∅  ∈  𝑈 ) ) | 
						
							| 26 | 22 25 | syl5ibrcom | ⊢ ( 𝜑  →  ( ¬  𝐴  ∈  V  →  ( 𝑊  ↾s  𝐴 )  ∈  𝑈 ) ) | 
						
							| 27 | 21 26 | pm2.61d | ⊢ ( 𝜑  →  ( 𝑊  ↾s  𝐴 )  ∈  𝑈 ) |