Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunsets.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wunsets.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) | ||
| wunsets.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| Assertion | wunsets | ⊢ ( 𝜑 → ( 𝑆 sSet 𝐴 ) ∈ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wunsets.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wunsets.2 | ⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) | |
| 3 | wunsets.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 4 | setsvalg | ⊢ ( ( 𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈 ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) | 
| 6 | 1 2 | wunres | ⊢ ( 𝜑 → ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ 𝑈 ) | 
| 7 | 1 3 | wunsn | ⊢ ( 𝜑 → { 𝐴 } ∈ 𝑈 ) | 
| 8 | 1 6 7 | wunun | ⊢ ( 𝜑 → ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ 𝑈 ) | 
| 9 | 5 8 | eqeltrd | ⊢ ( 𝜑 → ( 𝑆 sSet 𝐴 ) ∈ 𝑈 ) |