Metamath Proof Explorer


Theorem wunsets

Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wunsets.1 ( 𝜑𝑈 ∈ WUni )
wunsets.2 ( 𝜑𝑆𝑈 )
wunsets.3 ( 𝜑𝐴𝑈 )
Assertion wunsets ( 𝜑 → ( 𝑆 sSet 𝐴 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wunsets.1 ( 𝜑𝑈 ∈ WUni )
2 wunsets.2 ( 𝜑𝑆𝑈 )
3 wunsets.3 ( 𝜑𝐴𝑈 )
4 setsvalg ( ( 𝑆𝑈𝐴𝑈 ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) )
5 2 3 4 syl2anc ( 𝜑 → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) )
6 1 2 wunres ( 𝜑 → ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ 𝑈 )
7 1 3 wunsn ( 𝜑 → { 𝐴 } ∈ 𝑈 )
8 1 6 7 wunun ( 𝜑 → ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ 𝑈 )
9 5 8 eqeltrd ( 𝜑 → ( 𝑆 sSet 𝐴 ) ∈ 𝑈 )