Metamath Proof Explorer


Theorem wunstr

Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses strfvss.e 𝐸 = Slot 𝑁
wunstr.u ( 𝜑𝑈 ∈ WUni )
wunstr.s ( 𝜑𝑆𝑈 )
Assertion wunstr ( 𝜑 → ( 𝐸𝑆 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 strfvss.e 𝐸 = Slot 𝑁
2 wunstr.u ( 𝜑𝑈 ∈ WUni )
3 wunstr.s ( 𝜑𝑆𝑈 )
4 2 3 wunrn ( 𝜑 → ran 𝑆𝑈 )
5 2 4 wununi ( 𝜑 ran 𝑆𝑈 )
6 1 strfvss ( 𝐸𝑆 ) ⊆ ran 𝑆
7 6 a1i ( 𝜑 → ( 𝐸𝑆 ) ⊆ ran 𝑆 )
8 2 5 7 wunss ( 𝜑 → ( 𝐸𝑆 ) ∈ 𝑈 )