Metamath Proof Explorer
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
strfvss.e |
⊢ 𝐸 = Slot 𝑁 |
|
|
wunstr.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
|
|
wunstr.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
|
Assertion |
wunstr |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) ∈ 𝑈 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strfvss.e |
⊢ 𝐸 = Slot 𝑁 |
| 2 |
|
wunstr.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
| 3 |
|
wunstr.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑈 ) |
| 4 |
2 3
|
wunrn |
⊢ ( 𝜑 → ran 𝑆 ∈ 𝑈 ) |
| 5 |
2 4
|
wununi |
⊢ ( 𝜑 → ∪ ran 𝑆 ∈ 𝑈 ) |
| 6 |
1
|
strfvss |
⊢ ( 𝐸 ‘ 𝑆 ) ⊆ ∪ ran 𝑆 |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) ⊆ ∪ ran 𝑆 ) |
| 8 |
2 5 7
|
wunss |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) ∈ 𝑈 ) |