Metamath Proof Explorer
		
		
		
		Description:  A weak universe is closed under successors.  (Contributed by Mario
       Carneiro, 2-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wununi.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
					
						|  |  | wununi.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
				
					|  | Assertion | wunsuc | ⊢  ( 𝜑  →  suc  𝐴  ∈  𝑈 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wununi.1 | ⊢ ( 𝜑  →  𝑈  ∈  WUni ) | 
						
							| 2 |  | wununi.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑈 ) | 
						
							| 3 |  | df-suc | ⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 4 | 1 2 | wunsn | ⊢ ( 𝜑  →  { 𝐴 }  ∈  𝑈 ) | 
						
							| 5 | 1 2 4 | wunun | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝐴 } )  ∈  𝑈 ) | 
						
							| 6 | 3 5 | eqeltrid | ⊢ ( 𝜑  →  suc  𝐴  ∈  𝑈 ) |