Metamath Proof Explorer


Theorem wuntp

Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
wunpr.3 ( 𝜑𝐵𝑈 )
wuntp.3 ( 𝜑𝐶𝑈 )
Assertion wuntp ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 wunpr.3 ( 𝜑𝐵𝑈 )
4 wuntp.3 ( 𝜑𝐶𝑈 )
5 tpass { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 } ∪ { 𝐵 , 𝐶 } )
6 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
7 1 2 2 wunpr ( 𝜑 → { 𝐴 , 𝐴 } ∈ 𝑈 )
8 6 7 eqeltrid ( 𝜑 → { 𝐴 } ∈ 𝑈 )
9 1 3 4 wunpr ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑈 )
10 1 8 9 wunun ( 𝜑 → ( { 𝐴 } ∪ { 𝐵 , 𝐶 } ) ∈ 𝑈 )
11 5 10 eqeltrid ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ 𝑈 )