Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| wunpr.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| wuntp.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
| Assertion | wuntp | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 3 | wunpr.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 4 | wuntp.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
| 5 | tpass | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 } ∪ { 𝐵 , 𝐶 } ) | |
| 6 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
| 7 | 1 2 2 | wunpr | ⊢ ( 𝜑 → { 𝐴 , 𝐴 } ∈ 𝑈 ) | 
| 8 | 6 7 | eqeltrid | ⊢ ( 𝜑 → { 𝐴 } ∈ 𝑈 ) | 
| 9 | 1 3 4 | wunpr | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑈 ) | 
| 10 | 1 8 9 | wunun | ⊢ ( 𝜑 → ( { 𝐴 } ∪ { 𝐵 , 𝐶 } ) ∈ 𝑈 ) | 
| 11 | 5 10 | eqeltrid | ⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ 𝑈 ) |