Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
wunop.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
Assertion | wuntpos | ⊢ ( 𝜑 → tpos 𝐴 ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
2 | wunop.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
3 | 1 2 | wundm | ⊢ ( 𝜑 → dom 𝐴 ∈ 𝑈 ) |
4 | 1 3 | wuncnv | ⊢ ( 𝜑 → ◡ dom 𝐴 ∈ 𝑈 ) |
5 | 1 | wun0 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
6 | 1 5 | wunsn | ⊢ ( 𝜑 → { ∅ } ∈ 𝑈 ) |
7 | 1 4 6 | wunun | ⊢ ( 𝜑 → ( ◡ dom 𝐴 ∪ { ∅ } ) ∈ 𝑈 ) |
8 | 1 2 | wunrn | ⊢ ( 𝜑 → ran 𝐴 ∈ 𝑈 ) |
9 | 1 7 8 | wunxp | ⊢ ( 𝜑 → ( ( ◡ dom 𝐴 ∪ { ∅ } ) × ran 𝐴 ) ∈ 𝑈 ) |
10 | tposssxp | ⊢ tpos 𝐴 ⊆ ( ( ◡ dom 𝐴 ∪ { ∅ } ) × ran 𝐴 ) | |
11 | 10 | a1i | ⊢ ( 𝜑 → tpos 𝐴 ⊆ ( ( ◡ dom 𝐴 ∪ { ∅ } ) × ran 𝐴 ) ) |
12 | 1 9 11 | wunss | ⊢ ( 𝜑 → tpos 𝐴 ∈ 𝑈 ) |