Metamath Proof Explorer


Theorem wuntpos

Description: A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
Assertion wuntpos ( 𝜑 → tpos 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 1 2 wundm ( 𝜑 → dom 𝐴𝑈 )
4 1 3 wuncnv ( 𝜑 dom 𝐴𝑈 )
5 1 wun0 ( 𝜑 → ∅ ∈ 𝑈 )
6 1 5 wunsn ( 𝜑 → { ∅ } ∈ 𝑈 )
7 1 4 6 wunun ( 𝜑 → ( dom 𝐴 ∪ { ∅ } ) ∈ 𝑈 )
8 1 2 wunrn ( 𝜑 → ran 𝐴𝑈 )
9 1 7 8 wunxp ( 𝜑 → ( ( dom 𝐴 ∪ { ∅ } ) × ran 𝐴 ) ∈ 𝑈 )
10 tposssxp tpos 𝐴 ⊆ ( ( dom 𝐴 ∪ { ∅ } ) × ran 𝐴 )
11 10 a1i ( 𝜑 → tpos 𝐴 ⊆ ( ( dom 𝐴 ∪ { ∅ } ) × ran 𝐴 ) )
12 1 9 11 wunss ( 𝜑 → tpos 𝐴𝑈 )