Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| wunpr.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| Assertion | wunun | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wununi.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wununi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 3 | wunpr.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 4 | uniprg | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | 
| 6 | 1 2 3 | wunpr | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) | 
| 7 | 1 6 | wununi | ⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } ∈ 𝑈 ) | 
| 8 | 5 7 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |