Metamath Proof Explorer


Theorem wunun

Description: A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
wunpr.3 ( 𝜑𝐵𝑈 )
Assertion wunun ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 wunpr.3 ( 𝜑𝐵𝑈 )
4 uniprg ( ( 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
5 2 3 4 syl2anc ( 𝜑 { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
6 1 2 3 wunpr ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )
7 1 6 wununi ( 𝜑 { 𝐴 , 𝐵 } ∈ 𝑈 )
8 5 7 eqeltrrd ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )