Step |
Hyp |
Ref |
Expression |
1 |
|
wununi.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
wununi.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
3 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 ∈ 𝑈 ↔ ∪ 𝐴 ∈ 𝑈 ) ) |
5 |
|
iswun |
⊢ ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
6 |
5
|
ibi |
⊢ ( 𝑈 ∈ WUni → ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
7 |
6
|
simp3d |
⊢ ( 𝑈 ∈ WUni → ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
8 |
|
simp1 |
⊢ ( ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝑈 ) |
9 |
8
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 ∪ 𝑥 ∈ 𝑈 ) |
10 |
1 7 9
|
3syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∪ 𝑥 ∈ 𝑈 ) |
11 |
4 10 2
|
rspcdva |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑈 ) |