Metamath Proof Explorer


Theorem wununi

Description: A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 ( 𝜑𝑈 ∈ WUni )
wununi.2 ( 𝜑𝐴𝑈 )
Assertion wununi ( 𝜑 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 wununi.1 ( 𝜑𝑈 ∈ WUni )
2 wununi.2 ( 𝜑𝐴𝑈 )
3 unieq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
4 3 eleq1d ( 𝑥 = 𝐴 → ( 𝑥𝑈 𝐴𝑈 ) )
5 iswun ( 𝑈 ∈ WUni → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
6 5 ibi ( 𝑈 ∈ WUni → ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
7 6 simp3d ( 𝑈 ∈ WUni → ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) )
8 simp1 ( ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → 𝑥𝑈 )
9 8 ralimi ( ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) → ∀ 𝑥𝑈 𝑥𝑈 )
10 1 7 9 3syl ( 𝜑 → ∀ 𝑥𝑈 𝑥𝑈 )
11 4 10 2 rspcdva ( 𝜑 𝐴𝑈 )