Metamath Proof Explorer


Theorem wunxp

Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 ( 𝜑𝑈 ∈ WUni )
wunop.2 ( 𝜑𝐴𝑈 )
wunop.3 ( 𝜑𝐵𝑈 )
Assertion wunxp ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wun0.1 ( 𝜑𝑈 ∈ WUni )
2 wunop.2 ( 𝜑𝐴𝑈 )
3 wunop.3 ( 𝜑𝐵𝑈 )
4 1 2 3 wunun ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )
5 1 4 wunpw ( 𝜑 → 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 )
6 1 5 wunpw ( 𝜑 → 𝒫 𝒫 ( 𝐴𝐵 ) ∈ 𝑈 )
7 xpsspw ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴𝐵 )
8 7 a1i ( 𝜑 → ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴𝐵 ) )
9 1 6 8 wunss ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ 𝑈 )