| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlkbp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | df-wwlksn | ⊢  WWalksN   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  { 𝑤  ∈  ( WWalks ‘ 𝑔 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 ) } ) | 
						
							| 3 | 2 | elmpocl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V ) ) | 
						
							| 5 | 4 | ancomd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 6 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 8 | 1 | wwlkbp | ⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 11 | 7 10 | biimtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 13 |  | df-3an | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  ↔  ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0 )  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 14 | 5 12 13 | sylanbrc | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 15 | 3 14 | mpancom | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) |