Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknllvtx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlknbp1 |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) |
3 |
|
wwlknvtx |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ) |
4 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 0 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 = 0 ) → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
8 |
4 7
|
rspcdv |
⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
9 |
|
nn0fz0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
10 |
9
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑁 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 = 𝑁 ) → ( ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) ↔ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
14 |
10 13
|
rspcdv |
⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
15 |
8 14
|
jcad |
⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑥 ) ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
17 |
2 3 16
|
sylc |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
18 |
1
|
eleq2i |
⊢ ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ↔ ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
19 |
1
|
eleq2i |
⊢ ( ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ↔ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) |
20 |
18 19
|
anbi12i |
⊢ ( ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ) ↔ ( ( 𝑊 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
21 |
17 20
|
sylibr |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑊 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑊 ‘ 𝑁 ) ∈ 𝑉 ) ) |