| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 0 )  =  𝐴  ↔  ( 𝑊 ‘ 0 )  =  𝐴 ) ) | 
						
							| 3 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 𝑁 )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 𝑁 )  =  𝐵  ↔  ( 𝑊 ‘ 𝑁 )  =  𝐵 ) ) | 
						
							| 5 | 2 4 | anbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 )  ↔  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 𝑁 )  =  𝐵 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 | 6 | iswwlksnon | ⊢ ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } | 
						
							| 8 | 5 7 | elrab2 | ⊢ ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 𝑁 )  =  𝐵 ) ) ) | 
						
							| 9 |  | 3anass | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 𝑁 )  =  𝐵 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 𝑁 )  =  𝐵 ) ) ) | 
						
							| 10 | 8 9 | bitr4i | ⊢ ( 𝑊  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝐴  ∧  ( 𝑊 ‘ 𝑁 )  =  𝐵 ) ) |