Step |
Hyp |
Ref |
Expression |
1 |
|
wwlkbp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlknp.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1
|
wwlknbp |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |
4 |
|
iswwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
5 |
1 2
|
iswwlks |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑊 ∈ Word 𝑉 ) |
7 |
|
simprl |
⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) |
8 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
9 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
10 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
11 |
9 10
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
12 |
8 11
|
sylan9eq |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
13 |
12
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 0 ..^ 𝑁 ) ) |
14 |
13
|
raleqdv |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
15 |
14
|
biimpcd |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) |
18 |
6 7 17
|
3jca |
⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
20 |
5 19
|
sylbi |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
21 |
20
|
expdimp |
⊢ ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
22 |
21
|
com12 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
23 |
4 22
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
25 |
3 24
|
mpcom |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |