| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlkbp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlknp.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 | wwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 4 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 5 | 1 2 | iswwlks | ⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ↔  ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 6 |  | simpl2 | ⊢ ( ( ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  ∧  ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 7 |  | simprl | ⊢ ( ( ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  ∧  ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 9 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 10 |  | pncan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 12 | 8 11 | sylan9eq | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  𝑁 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 0 ..^ 𝑁 ) ) | 
						
							| 14 | 13 | raleqdv | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ↔  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 15 | 14 | biimpcd | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  →  ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  ∧  ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) | 
						
							| 18 | 6 7 17 | 3jca | ⊢ ( ( ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  ∧  ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝑊  ≠  ∅  ∧  𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 20 | 5 19 | sylbi | ⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  ( ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 21 | 20 | expdimp | ⊢ ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 22 | 21 | com12 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 23 | 4 22 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  𝑉 )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 25 | 3 24 | mpcom | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) |