| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 3 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | fzval3 | ⊢ ( 𝑁  ∈  ℤ  →  ( 0 ... 𝑁 )  =  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ... 𝑁 )  =  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 0 ... 𝑁 )  =  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑖  ∈  ( 0 ... 𝑁 )  ↔  𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 13 | 8 12 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 14 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 2 13 14 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  ∧  𝑖  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑖 )  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 | 1 16 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∀ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑖 )  ∈  ( Vtx ‘ 𝐺 ) ) |