Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
wwlkbp |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
3 |
2
|
simprd |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
4 |
1
|
wwlkbp |
⊢ ( 𝑇 ∈ ( WWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑇 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝑇 ∈ ( WWalks ‘ 𝐺 ) → 𝑇 ∈ Word ( Vtx ‘ 𝐺 ) ) |
6 |
|
eqwrd |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑇 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝑊 = 𝑇 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑇 ‘ 𝑖 ) ) ) ) |
7 |
3 5 6
|
syl2an |
⊢ ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ 𝑇 ∈ ( WWalks ‘ 𝐺 ) ) → ( 𝑊 = 𝑇 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 𝑇 ‘ 𝑖 ) ) ) ) |