| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( WWalks ‘ 𝑔 )  =  ( WWalks ‘ 𝐺 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( WWalks ‘ 𝑔 )  =  ( WWalks ‘ 𝐺 ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  +  1 )  =  ( 𝑁  +  1 ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑛  =  𝑁  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 )  ↔  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 )  ↔  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 6 | 2 5 | rabeqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  { 𝑤  ∈  ( WWalks ‘ 𝑔 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 ) }  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 7 |  | df-wwlksn | ⊢  WWalksN   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  { 𝑤  ∈  ( WWalks ‘ 𝑔 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 ) } ) | 
						
							| 8 |  | fvex | ⊢ ( WWalks ‘ 𝐺 )  ∈  V | 
						
							| 9 | 8 | rabex | ⊢ { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  ∈  V | 
						
							| 10 | 6 7 9 | ovmpoa | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 11 | 10 | expcom | ⊢ ( 𝐺  ∈  V  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) ) | 
						
							| 12 | 7 | reldmmpo | ⊢ Rel  dom   WWalksN | 
						
							| 13 | 12 | ovprc2 | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑁  WWalksN  𝐺 )  =  ∅ ) | 
						
							| 14 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( WWalks ‘ 𝐺 )  =  ∅ ) | 
						
							| 15 | 14 | rabeqdv | ⊢ ( ¬  𝐺  ∈  V  →  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  =  { 𝑤  ∈  ∅  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 16 |  | rab0 | ⊢ { 𝑤  ∈  ∅  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  =  ∅ | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ¬  𝐺  ∈  V  →  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  =  ∅ ) | 
						
							| 18 | 13 17 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 19 | 18 | a1d | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) ) | 
						
							| 20 | 11 19 | pm2.61i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) |