Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlksnextbij.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
ovexd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∈ V ) |
4 |
|
rabexg |
⊢ ( ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∈ V → { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ∈ V ) |
5 |
|
mptexg |
⊢ ( { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ∈ V → ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) ∈ V ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) ∈ V ) |
7 |
|
eqid |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } |
8 |
|
preq2 |
⊢ ( 𝑛 = 𝑝 → { ( lastS ‘ 𝑊 ) , 𝑛 } = { ( lastS ‘ 𝑊 ) , 𝑝 } ) |
9 |
8
|
eleq1d |
⊢ ( 𝑛 = 𝑝 → ( { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , 𝑝 } ∈ 𝐸 ) ) |
10 |
9
|
cbvrabv |
⊢ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } = { 𝑝 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑝 } ∈ 𝐸 } |
11 |
|
fveqeq2 |
⊢ ( 𝑡 = 𝑤 → ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ↔ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑡 = 𝑤 → ( 𝑡 prefix ( 𝑁 + 1 ) ) = ( 𝑤 prefix ( 𝑁 + 1 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑡 = 𝑤 → ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ↔ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑡 = 𝑤 → ( lastS ‘ 𝑡 ) = ( lastS ‘ 𝑤 ) ) |
15 |
14
|
preq2d |
⊢ ( 𝑡 = 𝑤 → { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } = { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ) |
16 |
15
|
eleq1d |
⊢ ( 𝑡 = 𝑤 → ( { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) |
17 |
11 13 16
|
3anbi123d |
⊢ ( 𝑡 = 𝑤 → ( ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ↔ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) |
18 |
17
|
cbvrabv |
⊢ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } |
19 |
18
|
mpteq1i |
⊢ ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) |
20 |
1 2 7 10 19
|
wwlksnextbij0 |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ) |
21 |
|
eqid |
⊢ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } = { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } |
22 |
1 2 21
|
wwlksnextwrd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } = { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ) |
23 |
22
|
eqcomd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } = { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ) |
24 |
23
|
mpteq1d |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) ) |
25 |
1 2 7
|
wwlksnextwrd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } ) |
26 |
25
|
eqcomd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } ) |
27 |
|
eqidd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } = { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ) |
28 |
24 26 27
|
f1oeq123d |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) : { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ↔ ( 𝑥 ∈ { 𝑡 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ) ) |
29 |
20 28
|
mpbird |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) : { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ) |
30 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) → ( 𝑓 : { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ↔ ( 𝑥 ∈ { 𝑡 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) } ↦ ( lastS ‘ 𝑥 ) ) : { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ) ) |
31 |
6 29 30
|
spcedv |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ∃ 𝑓 𝑓 : { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } –1-1-onto→ { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } ) |