Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlksnextbij0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
wwlksnextbij0.d |
⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } |
4 |
|
wwlksnextbij0.r |
⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } |
5 |
|
wwlksnextbij0.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( lastS ‘ 𝑡 ) ) |
6 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑡 → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ↔ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 prefix ( 𝑁 + 1 ) ) = ( 𝑡 prefix ( 𝑁 + 1 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ↔ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑡 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑡 ) ) |
10 |
9
|
preq2d |
⊢ ( 𝑤 = 𝑡 → { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } = { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ) |
11 |
10
|
eleq1d |
⊢ ( 𝑤 = 𝑡 → ( { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) |
12 |
6 8 11
|
3anbi123d |
⊢ ( 𝑤 = 𝑡 → ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ↔ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) ) |
13 |
12 3
|
elrab2 |
⊢ ( 𝑡 ∈ 𝐷 ↔ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) ) |
14 |
|
simpll |
⊢ ( ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) → 𝑡 ∈ Word 𝑉 ) |
15 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
16 |
|
2re |
⊢ 2 ∈ ℝ |
17 |
16
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
18 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
19 |
|
2pos |
⊢ 0 < 2 |
20 |
19
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 < 2 ) |
21 |
15 17 18 20
|
addgegt0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 2 ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) → 0 < ( 𝑁 + 2 ) ) |
23 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) → ( 0 < ( ♯ ‘ 𝑡 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) → ( 0 < ( ♯ ‘ 𝑡 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
25 |
22 24
|
mpbird |
⊢ ( ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) → 0 < ( ♯ ‘ 𝑡 ) ) |
26 |
|
hashgt0n0 |
⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑡 ) ) → 𝑡 ≠ ∅ ) |
27 |
14 25 26
|
syl2anc |
⊢ ( ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) → 𝑡 ≠ ∅ ) |
28 |
14 27
|
jca |
⊢ ( ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ) → ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) ) |
29 |
28
|
expcom |
⊢ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) → ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) ) ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) → ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) ) ) |
31 |
30
|
expd |
⊢ ( ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) → ( 𝑡 ∈ Word 𝑉 → ( 𝑁 ∈ ℕ0 → ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) ) ) ) |
32 |
31
|
impcom |
⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) ) ) |
33 |
32
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) ) → ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) ) |
34 |
|
lswcl |
⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ 𝑡 ≠ ∅ ) → ( lastS ‘ 𝑡 ) ∈ 𝑉 ) |
35 |
33 34
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) ) → ( lastS ‘ 𝑡 ) ∈ 𝑉 ) |
36 |
|
simprr3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) ) → { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) |
37 |
35 36
|
jca |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = ( 𝑁 + 2 ) ∧ ( 𝑡 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) ) → ( ( lastS ‘ 𝑡 ) ∈ 𝑉 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) |
38 |
13 37
|
sylan2b |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑡 ∈ 𝐷 ) → ( ( lastS ‘ 𝑡 ) ∈ 𝑉 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) |
39 |
|
preq2 |
⊢ ( 𝑛 = ( lastS ‘ 𝑡 ) → { ( lastS ‘ 𝑊 ) , 𝑛 } = { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ) |
40 |
39
|
eleq1d |
⊢ ( 𝑛 = ( lastS ‘ 𝑡 ) → ( { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) |
41 |
40 4
|
elrab2 |
⊢ ( ( lastS ‘ 𝑡 ) ∈ 𝑅 ↔ ( ( lastS ‘ 𝑡 ) ∈ 𝑉 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑡 ) } ∈ 𝐸 ) ) |
42 |
38 41
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑡 ∈ 𝐷 ) → ( lastS ‘ 𝑡 ) ∈ 𝑅 ) |
43 |
42 5
|
fmptd |
⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝐷 ⟶ 𝑅 ) |