Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlksnextbij0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
wwlksnextbij0.d |
⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } |
4 |
|
wwlksnextbij0.r |
⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { ( lastS ‘ 𝑊 ) , 𝑛 } ∈ 𝐸 } |
5 |
|
wwlksnextbij0.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( lastS ‘ 𝑡 ) ) |
6 |
1 2 3 4 5
|
wwlksnextfun |
⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝐷 ⟶ 𝑅 ) |
7 |
|
fveq2 |
⊢ ( 𝑡 = 𝑑 → ( lastS ‘ 𝑡 ) = ( lastS ‘ 𝑑 ) ) |
8 |
|
fvex |
⊢ ( lastS ‘ 𝑑 ) ∈ V |
9 |
7 5 8
|
fvmpt |
⊢ ( 𝑑 ∈ 𝐷 → ( 𝐹 ‘ 𝑑 ) = ( lastS ‘ 𝑑 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( lastS ‘ 𝑡 ) = ( lastS ‘ 𝑥 ) ) |
11 |
|
fvex |
⊢ ( lastS ‘ 𝑥 ) ∈ V |
12 |
10 5 11
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( lastS ‘ 𝑥 ) ) |
13 |
9 12
|
eqeqan12d |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑥 ) ↔ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ) |
15 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑑 → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ↔ ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑤 = 𝑑 → ( 𝑤 prefix ( 𝑁 + 1 ) ) = ( 𝑑 prefix ( 𝑁 + 1 ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑤 = 𝑑 → ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ↔ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ) ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑑 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑑 ) ) |
19 |
18
|
preq2d |
⊢ ( 𝑤 = 𝑑 → { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } = { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ) |
20 |
19
|
eleq1d |
⊢ ( 𝑤 = 𝑑 → ( { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) |
21 |
15 17 20
|
3anbi123d |
⊢ ( 𝑤 = 𝑑 → ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ↔ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ) |
22 |
21 3
|
elrab2 |
⊢ ( 𝑑 ∈ 𝐷 ↔ ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ) |
23 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑥 → ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ↔ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ) ) |
24 |
|
oveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
25 |
24
|
eqeq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ↔ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑥 ) ) |
27 |
26
|
preq2d |
⊢ ( 𝑤 = 𝑥 → { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } = { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ) |
28 |
27
|
eleq1d |
⊢ ( 𝑤 = 𝑥 → ( { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) |
29 |
23 25 28
|
3anbi123d |
⊢ ( 𝑤 = 𝑥 → ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ↔ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) |
30 |
29 3
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) |
31 |
|
eqtr3 |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) |
32 |
31
|
expcom |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) ) |
35 |
34
|
com12 |
⊢ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) → ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) → ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) ) |
38 |
37
|
imp |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) → ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ) |
41 |
|
simpr |
⊢ ( ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) → ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) |
42 |
|
eqtr3 |
⊢ ( ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ) |
43 |
|
1e2m1 |
⊢ 1 = ( 2 − 1 ) |
44 |
43
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 1 = ( 2 − 1 ) ) |
45 |
44
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) = ( 𝑁 + ( 2 − 1 ) ) ) |
46 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
47 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℂ ) |
48 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
49 |
46 47 48
|
addsubassd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 2 ) − 1 ) = ( 𝑁 + ( 2 − 1 ) ) ) |
50 |
45 49
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ) → ( 𝑁 + 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) |
52 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ( ♯ ‘ 𝑑 ) − 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) |
53 |
52
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑑 ) − 1 ) ↔ ( 𝑁 + 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) ) |
54 |
53
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ) → ( ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑑 ) − 1 ) ↔ ( 𝑁 + 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) ) |
55 |
51 54
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ) → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑑 ) − 1 ) ) |
56 |
|
oveq2 |
⊢ ( ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑑 ) − 1 ) → ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) |
57 |
|
oveq2 |
⊢ ( ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑑 ) − 1 ) → ( 𝑥 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) |
58 |
56 57
|
eqeq12d |
⊢ ( ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑑 ) − 1 ) → ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ↔ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) |
59 |
55 58
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ) → ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) ↔ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) |
60 |
59
|
biimpd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ) → ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) |
61 |
60
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
62 |
61
|
com13 |
⊢ ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = ( 𝑥 prefix ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
63 |
42 62
|
syl |
⊢ ( ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
64 |
63
|
ex |
⊢ ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) ) |
65 |
64
|
com23 |
⊢ ( ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) ) |
66 |
65
|
impcom |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
67 |
66
|
com12 |
⊢ ( ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
68 |
67
|
3ad2ant2 |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) → ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
70 |
69
|
com12 |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ) → ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
71 |
70
|
3adant3 |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) → ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
72 |
71
|
adantl |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) → ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
73 |
72
|
imp31 |
⊢ ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) → ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) |
75 |
|
simpl |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) → 𝑑 ∈ Word 𝑉 ) |
76 |
|
simpl |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → 𝑥 ∈ Word 𝑉 ) |
77 |
75 76
|
anim12i |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) → ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ) |
79 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
80 |
|
2re |
⊢ 2 ∈ ℝ |
81 |
80
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
82 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
83 |
|
2pos |
⊢ 0 < 2 |
84 |
83
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 < 2 ) |
85 |
79 81 82 84
|
addgegt0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 2 ) ) |
86 |
85
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 < ( 𝑁 + 2 ) ) |
87 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
88 |
87
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
89 |
86 88
|
mpbird |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 < ( ♯ ‘ 𝑑 ) ) |
90 |
|
hashgt0n0 |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑑 ) ) → 𝑑 ≠ ∅ ) |
91 |
89 90
|
sylan2 |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑑 ≠ ∅ ) |
92 |
91
|
exp32 |
⊢ ( 𝑑 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( 𝑁 ∈ ℕ0 → 𝑑 ≠ ∅ ) ) ) |
93 |
92
|
com12 |
⊢ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) → ( 𝑑 ∈ Word 𝑉 → ( 𝑁 ∈ ℕ0 → 𝑑 ≠ ∅ ) ) ) |
94 |
93
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) → ( 𝑑 ∈ Word 𝑉 → ( 𝑁 ∈ ℕ0 → 𝑑 ≠ ∅ ) ) ) |
95 |
94
|
impcom |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) → ( 𝑁 ∈ ℕ0 → 𝑑 ≠ ∅ ) ) |
96 |
95
|
adantr |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) → ( 𝑁 ∈ ℕ0 → 𝑑 ≠ ∅ ) ) |
97 |
96
|
imp |
⊢ ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑑 ≠ ∅ ) |
98 |
85
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 < ( 𝑁 + 2 ) ) |
99 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) → ( 0 < ( ♯ ‘ 𝑥 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( ♯ ‘ 𝑥 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
101 |
98 100
|
mpbird |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 < ( ♯ ‘ 𝑥 ) ) |
102 |
|
hashgt0n0 |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑥 ) ) → 𝑥 ≠ ∅ ) |
103 |
101 102
|
sylan2 |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑥 ≠ ∅ ) |
104 |
103
|
exp32 |
⊢ ( 𝑥 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) → ( 𝑁 ∈ ℕ0 → 𝑥 ≠ ∅ ) ) ) |
105 |
104
|
com12 |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) → ( 𝑥 ∈ Word 𝑉 → ( 𝑁 ∈ ℕ0 → 𝑥 ≠ ∅ ) ) ) |
106 |
105
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) → ( 𝑥 ∈ Word 𝑉 → ( 𝑁 ∈ ℕ0 → 𝑥 ≠ ∅ ) ) ) |
107 |
106
|
impcom |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) → ( 𝑁 ∈ ℕ0 → 𝑥 ≠ ∅ ) ) |
108 |
107
|
adantl |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) → ( 𝑁 ∈ ℕ0 → 𝑥 ≠ ∅ ) ) |
109 |
108
|
imp |
⊢ ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑥 ≠ ∅ ) |
110 |
78 97 109
|
jca32 |
⊢ ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) ) |
111 |
110
|
adantr |
⊢ ( ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) → ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) ) |
112 |
|
simpl |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) → 𝑑 ∈ Word 𝑉 ) |
113 |
112
|
adantr |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) → 𝑑 ∈ Word 𝑉 ) |
114 |
|
simpr |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) → 𝑥 ∈ Word 𝑉 ) |
115 |
114
|
adantr |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ∈ Word 𝑉 ) |
116 |
|
hashneq0 |
⊢ ( 𝑑 ∈ Word 𝑉 → ( 0 < ( ♯ ‘ 𝑑 ) ↔ 𝑑 ≠ ∅ ) ) |
117 |
116
|
biimprd |
⊢ ( 𝑑 ∈ Word 𝑉 → ( 𝑑 ≠ ∅ → 0 < ( ♯ ‘ 𝑑 ) ) ) |
118 |
117
|
adantr |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) → ( 𝑑 ≠ ∅ → 0 < ( ♯ ‘ 𝑑 ) ) ) |
119 |
118
|
com12 |
⊢ ( 𝑑 ≠ ∅ → ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) → 0 < ( ♯ ‘ 𝑑 ) ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) → ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) → 0 < ( ♯ ‘ 𝑑 ) ) ) |
121 |
120
|
impcom |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) → 0 < ( ♯ ‘ 𝑑 ) ) |
122 |
|
pfxsuff1eqwrdeq |
⊢ ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑑 ) ) → ( 𝑑 = 𝑥 ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ) ) ) |
123 |
113 115 121 122
|
syl3anc |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) → ( 𝑑 = 𝑥 ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ) ) ) |
124 |
|
ancom |
⊢ ( ( ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ↔ ( ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) |
125 |
124
|
anbi2i |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ) ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
126 |
|
3anass |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
127 |
125 126
|
bitr4i |
⊢ ( ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) ) ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) |
128 |
123 127
|
bitrdi |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ 𝑥 ∈ Word 𝑉 ) ∧ ( 𝑑 ≠ ∅ ∧ 𝑥 ≠ ∅ ) ) → ( 𝑑 = 𝑥 ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
129 |
111 128
|
syl |
⊢ ( ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) → ( 𝑑 = 𝑥 ↔ ( ( ♯ ‘ 𝑑 ) = ( ♯ ‘ 𝑥 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ∧ ( 𝑑 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑑 ) − 1 ) ) ) ) ) |
130 |
40 41 74 129
|
mpbir3and |
⊢ ( ( ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) ) → 𝑑 = 𝑥 ) |
131 |
130
|
exp31 |
⊢ ( ( ( 𝑑 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑑 ) = ( 𝑁 + 2 ) ∧ ( 𝑑 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑑 ) } ∈ 𝐸 ) ) ∧ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 2 ) ∧ ( 𝑥 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑥 ) } ∈ 𝐸 ) ) ) → ( 𝑁 ∈ ℕ0 → ( ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) → 𝑑 = 𝑥 ) ) ) |
132 |
22 30 131
|
syl2anb |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑁 ∈ ℕ0 → ( ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) → 𝑑 = 𝑥 ) ) ) |
133 |
132
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) ) → ( ( lastS ‘ 𝑑 ) = ( lastS ‘ 𝑥 ) → 𝑑 = 𝑥 ) ) |
134 |
14 133
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑑 ∈ 𝐷 ∧ 𝑥 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑥 ) → 𝑑 = 𝑥 ) ) |
135 |
134
|
ralrimivva |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑑 ∈ 𝐷 ∀ 𝑥 ∈ 𝐷 ( ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑥 ) → 𝑑 = 𝑥 ) ) |
136 |
|
dff13 |
⊢ ( 𝐹 : 𝐷 –1-1→ 𝑅 ↔ ( 𝐹 : 𝐷 ⟶ 𝑅 ∧ ∀ 𝑑 ∈ 𝐷 ∀ 𝑥 ∈ 𝐷 ( ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑥 ) → 𝑑 = 𝑥 ) ) ) |
137 |
6 135 136
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝐷 –1-1→ 𝑅 ) |