Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextprop.x |
⊢ 𝑋 = ( ( 𝑁 + 1 ) WWalksN 𝐺 ) |
2 |
|
wwlksnextprop.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
wwlksnextprop.y |
⊢ 𝑌 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } |
4 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
5 |
|
iswwlksn |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
8 |
7
|
wwlkbp |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
9 |
|
lencl |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
10 |
|
eqcom |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ↔ ( ( 𝑁 + 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ) |
11 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
13 |
|
1cnd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℂ ) |
14 |
|
nn0cn |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℂ ) |
15 |
4 14
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℂ ) |
16 |
15
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℂ ) |
17 |
|
subadd2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ) ) |
18 |
17
|
bicomd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℂ ) → ( ( ( 𝑁 + 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝑁 + 1 ) ) ) |
19 |
12 13 16 18
|
syl3anc |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 1 ) = ( ♯ ‘ 𝑊 ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝑁 + 1 ) ) ) |
20 |
10 19
|
syl5bb |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ↔ ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝑁 + 1 ) ) ) |
21 |
|
eqcom |
⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝑁 + 1 ) ↔ ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
22 |
21
|
biimpi |
⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝑁 + 1 ) → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
23 |
20 22
|
syl6bi |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
24 |
23
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
25 |
24
|
com23 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
26 |
9 25
|
syl |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
27 |
8 26
|
simpl2im |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
28 |
27
|
imp31 |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
29 |
28
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) = ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑊 ∈ ( WWalks ‘ 𝐺 ) ) |
31 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
32 |
|
2re |
⊢ 2 ∈ ℝ |
33 |
32
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
34 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
35 |
33 34
|
addge02d |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ≤ 𝑁 ↔ 2 ≤ ( 𝑁 + 2 ) ) ) |
36 |
31 35
|
mpbid |
⊢ ( 𝑁 ∈ ℕ0 → 2 ≤ ( 𝑁 + 2 ) ) |
37 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
38 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
39 |
37 38 38
|
addassd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + ( 1 + 1 ) ) ) |
40 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
41 |
40
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 + 1 ) = 2 ) |
42 |
41
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + ( 1 + 1 ) ) = ( 𝑁 + 2 ) ) |
43 |
39 42
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + 2 ) ) |
44 |
36 43
|
breqtrrd |
⊢ ( 𝑁 ∈ ℕ0 → 2 ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 2 ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
46 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ 2 ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 ≤ ( ♯ ‘ 𝑊 ) ↔ 2 ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) |
48 |
45 47
|
mpbird |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 2 ≤ ( ♯ ‘ 𝑊 ) ) |
49 |
|
wwlksm1edg |
⊢ ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ 2 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) |
50 |
30 48 49
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) |
51 |
29 50
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) |
52 |
51
|
expcom |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) ) |
53 |
6 52
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) ) |
54 |
53
|
com12 |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ) |
57 |
7 2
|
wwlknp |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
58 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
59 |
|
peano2nn0 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) |
60 |
4 59
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) |
61 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
62 |
34 61
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℝ ) |
63 |
62
|
lep1d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
64 |
|
elfz2nn0 |
⊢ ( ( 𝑁 + 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) + 1 ) ) ↔ ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ∧ ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) |
65 |
4 60 63 64
|
syl3anbrc |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) + 1 ) ) ) |
66 |
65
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) + 1 ) ) ) |
67 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( 𝑁 + 1 ) + 1 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( 𝑁 + 1 ) + 1 ) ) ) |
69 |
66 68
|
eleqtrrd |
⊢ ( ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
70 |
69
|
adantll |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
71 |
58 70
|
jca |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
72 |
71
|
ex |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
73 |
72
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
74 |
57 73
|
syl |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
76 |
75
|
imp |
⊢ ( ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
77 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
78 |
76 77
|
syl |
⊢ ( ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑊 prefix ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) |
79 |
56 78
|
jca |
⊢ ( ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 prefix ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) ) |
80 |
|
iswwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 prefix ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) ) ) |
81 |
80
|
adantl |
⊢ ( ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 prefix ( 𝑁 + 1 ) ) ) = ( 𝑁 + 1 ) ) ) ) |
82 |
79 81
|
mpbird |
⊢ ( ( ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑃 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ) |
83 |
82
|
exp31 |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( ( 𝑊 ‘ 0 ) = 𝑃 → ( 𝑁 ∈ ℕ0 → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ) ) ) |
84 |
83 1
|
eleq2s |
⊢ ( 𝑊 ∈ 𝑋 → ( ( 𝑊 ‘ 0 ) = 𝑃 → ( 𝑁 ∈ ℕ0 → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ) ) ) |
85 |
84
|
3imp |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ ( 𝑊 ‘ 0 ) = 𝑃 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ) |
86 |
1
|
wwlksnextproplem1 |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
87 |
86
|
3adant2 |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ ( 𝑊 ‘ 0 ) = 𝑃 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
88 |
|
simp2 |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ ( 𝑊 ‘ 0 ) = 𝑃 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ‘ 0 ) = 𝑃 ) |
89 |
87 88
|
eqtrd |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ ( 𝑊 ‘ 0 ) = 𝑃 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = 𝑃 ) |
90 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑊 prefix ( 𝑁 + 1 ) ) → ( 𝑤 ‘ 0 ) = ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) ) |
91 |
90
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑊 prefix ( 𝑁 + 1 ) ) → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = 𝑃 ) ) |
92 |
91 3
|
elrab2 |
⊢ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ 𝑌 ↔ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = 𝑃 ) ) |
93 |
85 89 92
|
sylanbrc |
⊢ ( ( 𝑊 ∈ 𝑋 ∧ ( 𝑊 ‘ 0 ) = 𝑃 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) ∈ 𝑌 ) |