| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wwlksnextprop.x | 
							⊢ 𝑋  =  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							wwlksnextprop.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							wwlksnextprop.y | 
							⊢ 𝑌  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  | 
						
						
							| 4 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 )  | 
						
						
							| 5 | 
							
								
							 | 
							iswwlksn | 
							⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 8 | 
							
								7
							 | 
							wwlkbp | 
							⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nn0cn | 
							⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ℂ )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  1  ∈  ℂ )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0cn | 
							⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								4 14
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ℂ )  | 
						
						
							| 17 | 
							
								
							 | 
							subadd2 | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑁  +  1 )  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							bicomd | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝑁  +  1 )  ∈  ℂ )  →  ( ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 19 | 
							
								12 13 16 18
							 | 
							syl3anc | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑁  +  1 )  +  1 )  =  ( ♯ ‘ 𝑊 )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							bitrid | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ↔  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 )  ↔  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							biimpi | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( 𝑁  +  1 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							biimtrdi | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( 𝑁  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							com23 | 
							⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) )  | 
						
						
							| 26 | 
							
								9 25
							 | 
							syl | 
							⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) )  | 
						
						
							| 27 | 
							
								8 26
							 | 
							simpl2im | 
							⊢ ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							imp31 | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  =  ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑊  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							nn0ge0 | 
							⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 )  | 
						
						
							| 32 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ )  | 
						
						
							| 34 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							addge02d | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 0  ≤  𝑁  ↔  2  ≤  ( 𝑁  +  2 ) ) )  | 
						
						
							| 36 | 
							
								31 35
							 | 
							mpbid | 
							⊢ ( 𝑁  ∈  ℕ0  →  2  ≤  ( 𝑁  +  2 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							nn0cn | 
							⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ )  | 
						
						
							| 38 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ )  | 
						
						
							| 39 | 
							
								37 38 38
							 | 
							addassd | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  ( 1  +  1 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							1p1e2 | 
							⊢ ( 1  +  1 )  =  2  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 1  +  1 )  =  2 )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq2d | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  ( 1  +  1 ) )  =  ( 𝑁  +  2 ) )  | 
						
						
							| 43 | 
							
								39 42
							 | 
							eqtrd | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  =  ( 𝑁  +  2 ) )  | 
						
						
							| 44 | 
							
								36 43
							 | 
							breqtrrd | 
							⊢ ( 𝑁  ∈  ℕ0  →  2  ≤  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  2  ≤  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑊 )  ↔  2  ≤  ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ≤  ( ♯ ‘ 𝑊 )  ↔  2  ≤  ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 48 | 
							
								45 47
							 | 
							mpbird | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  2  ≤  ( ♯ ‘ 𝑊 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							wwlksm1edg | 
							⊢ ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  2  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 50 | 
							
								30 48 49
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( ( ♯ ‘ 𝑊 )  −  1 ) )  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 51 | 
							
								29 50
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							expcom | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 53 | 
							
								6 52
							 | 
							sylbid | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							com12 | 
							⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							⊢ ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							imp | 
							⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 ) )  | 
						
						
							| 57 | 
							
								7 2
							 | 
							wwlknp | 
							⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							peano2nn0 | 
							⊢ ( ( 𝑁  +  1 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 )  | 
						
						
							| 60 | 
							
								4 59
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0 )  | 
						
						
							| 61 | 
							
								
							 | 
							peano2re | 
							⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ )  | 
						
						
							| 62 | 
							
								34 61
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ )  | 
						
						
							| 63 | 
							
								62
							 | 
							lep1d | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) )  | 
						
						
							| 64 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( ( 𝑁  +  1 )  ∈  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) )  ↔  ( ( 𝑁  +  1 )  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  +  1 )  ∈  ℕ0  ∧  ( 𝑁  +  1 )  ≤  ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 65 | 
							
								4 60 63 64
							 | 
							syl3anbrc | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantl | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0 ... ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( 𝑁  +  1 )  +  1 ) ) )  | 
						
						
							| 69 | 
							
								66 68
							 | 
							eleqtrrd | 
							⊢ ( ( ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantll | 
							⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  | 
						
						
							| 71 | 
							
								58 70
							 | 
							jca | 
							⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							ex | 
							⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 ) )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							3adant3 | 
							⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( ( 𝑁  +  1 )  +  1 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 74 | 
							
								57 73
							 | 
							syl | 
							⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantr | 
							⊢ ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							imp | 
							⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							pfxlen | 
							⊢ ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝑁  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) )  | 
						
						
							| 78 | 
							
								76 77
							 | 
							syl | 
							⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) )  | 
						
						
							| 79 | 
							
								56 78
							 | 
							jca | 
							⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							iswwlksn | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							adantl | 
							⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  +  1 ) ) )  =  ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 82 | 
							
								79 81
							 | 
							mpbird | 
							⊢ ( ( ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑃 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							exp31 | 
							⊢ ( 𝑊  ∈  ( ( 𝑁  +  1 )  WWalksN  𝐺 )  →  ( ( 𝑊 ‘ 0 )  =  𝑃  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) )  | 
						
						
							| 84 | 
							
								83 1
							 | 
							eleq2s | 
							⊢ ( 𝑊  ∈  𝑋  →  ( ( 𝑊 ‘ 0 )  =  𝑃  →  ( 𝑁  ∈  ℕ0  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							3imp | 
							⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 ) )  | 
						
						
							| 86 | 
							
								1
							 | 
							wwlksnextproplem1 | 
							⊢ ( ( 𝑊  ∈  𝑋  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							3adant2 | 
							⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  ( 𝑊 ‘ 0 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊 ‘ 0 )  =  𝑃 )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							eqtrd | 
							⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 )  | 
						
						
							| 90 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( 𝑤 ‘ 0 )  =  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  ( 𝑊  prefix  ( 𝑁  +  1 ) )  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) )  | 
						
						
							| 92 | 
							
								91 3
							 | 
							elrab2 | 
							⊢ ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  𝑌  ↔  ( ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( ( 𝑊  prefix  ( 𝑁  +  1 ) ) ‘ 0 )  =  𝑃 ) )  | 
						
						
							| 93 | 
							
								85 89 92
							 | 
							sylanbrc | 
							⊢ ( ( 𝑊  ∈  𝑋  ∧  ( 𝑊 ‘ 0 )  =  𝑃  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑊  prefix  ( 𝑁  +  1 ) )  ∈  𝑌 )  |