Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij0.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wwlksnextbij0.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
wwlksnextbij0.d |
⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } |
4 |
|
3anass |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ↔ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) |
5 |
4
|
bianass |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) |
6 |
1
|
wwlknbp |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → 𝑁 ∈ ℕ0 ) |
8 |
|
simpl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) → 𝑤 ∈ Word 𝑉 ) |
9 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
10 |
|
2re |
⊢ 2 ∈ ℝ |
11 |
10
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
12 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
13 |
|
2pos |
⊢ 0 < 2 |
14 |
13
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 < 2 ) |
15 |
9 11 12 14
|
addgegt0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 2 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → 0 < ( 𝑁 + 2 ) ) |
17 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) → ( 0 < ( ♯ ‘ 𝑤 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
18 |
17
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( 0 < ( ♯ ‘ 𝑤 ) ↔ 0 < ( 𝑁 + 2 ) ) ) |
19 |
16 18
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → 0 < ( ♯ ‘ 𝑤 ) ) |
20 |
|
hashgt0n0 |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ 0 < ( ♯ ‘ 𝑤 ) ) → 𝑤 ≠ ∅ ) |
21 |
8 19 20
|
syl2an2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → 𝑤 ≠ ∅ ) |
22 |
|
lswcl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ 𝑤 ≠ ∅ ) → ( lastS ‘ 𝑤 ) ∈ 𝑉 ) |
23 |
8 21 22
|
syl2an2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( lastS ‘ 𝑤 ) ∈ 𝑉 ) |
24 |
23
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → ( lastS ‘ 𝑤 ) ∈ 𝑉 ) |
25 |
|
pfxcl |
⊢ ( 𝑤 ∈ Word 𝑉 → ( 𝑤 prefix ( 𝑁 + 1 ) ) ∈ Word 𝑉 ) |
26 |
|
eleq1 |
⊢ ( 𝑊 = ( 𝑤 prefix ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 ↔ ( 𝑤 prefix ( 𝑁 + 1 ) ) ∈ Word 𝑉 ) ) |
27 |
25 26
|
syl5ibr |
⊢ ( 𝑊 = ( 𝑤 prefix ( 𝑁 + 1 ) ) → ( 𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉 ) ) |
28 |
27
|
eqcoms |
⊢ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( 𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) → ( 𝑤 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉 ) ) |
30 |
29
|
com12 |
⊢ ( 𝑤 ∈ Word 𝑉 → ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) → 𝑊 ∈ Word 𝑉 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) → ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) → 𝑊 ∈ Word 𝑉 ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → 𝑊 ∈ Word 𝑉 ) |
33 |
32
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
34 |
|
oveq1 |
⊢ ( 𝑊 = ( 𝑤 prefix ( 𝑁 + 1 ) ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) |
35 |
34
|
eqcoms |
⊢ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) |
37 |
36
|
ad2antll |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → ( 𝑊 ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) |
38 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( 𝑁 + 2 ) − 1 ) ) |
40 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
41 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℂ ) |
42 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
43 |
40 41 42
|
addsubassd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 2 ) − 1 ) = ( 𝑁 + ( 2 − 1 ) ) ) |
44 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
45 |
44
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 − 1 ) = 1 ) |
46 |
45
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + ( 2 − 1 ) ) = ( 𝑁 + 1 ) ) |
47 |
43 46
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 2 ) − 1 ) = ( 𝑁 + 1 ) ) |
48 |
39 47
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( 𝑁 + 1 ) ) |
49 |
48
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( 𝑤 prefix ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 𝑤 prefix ( 𝑁 + 1 ) ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( ( 𝑤 prefix ( ( ♯ ‘ 𝑤 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) |
51 |
|
pfxlswccat |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ 𝑤 ≠ ∅ ) → ( ( 𝑤 prefix ( ( ♯ ‘ 𝑤 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = 𝑤 ) |
52 |
8 21 51
|
syl2an2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( ( 𝑤 prefix ( ( ♯ ‘ 𝑤 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = 𝑤 ) |
53 |
50 52
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) → ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = 𝑤 ) |
54 |
53
|
adantrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → ( ( 𝑤 prefix ( 𝑁 + 1 ) ) ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) = 𝑤 ) |
55 |
37 54
|
eqtr2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → 𝑤 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ) |
56 |
|
simprrr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) |
57 |
1 2
|
wwlksnextbi |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( lastS ‘ 𝑤 ) ∈ 𝑉 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑤 = ( 𝑊 ++ 〈“ ( lastS ‘ 𝑤 ) ”〉 ) ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ↔ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |
58 |
7 24 33 55 56 57
|
syl23anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ↔ 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |
59 |
58
|
exbiri |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ) |
60 |
59
|
com23 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ) |
61 |
60
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ) |
62 |
6 61
|
mpcom |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) |
63 |
62
|
expcomd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) → 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ) |
64 |
63
|
imp |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) → 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) |
65 |
1 2
|
wwlknp |
⊢ ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
66 |
40 42 42
|
addassd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + ( 1 + 1 ) ) ) |
67 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
68 |
67
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 + 1 ) = 2 ) |
69 |
68
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + ( 1 + 1 ) ) = ( 𝑁 + 2 ) ) |
70 |
66 69
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) = ( 𝑁 + 2 ) ) |
71 |
70
|
eqeq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) ↔ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) |
72 |
71
|
biimpd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) |
74 |
73
|
com12 |
⊢ ( ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) |
75 |
74
|
adantl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) |
76 |
|
simpl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) ) → 𝑤 ∈ Word 𝑉 ) |
77 |
75 76
|
jctild |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
78 |
77
|
3adant3 |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
79 |
65 78
|
syl |
⊢ ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
80 |
79
|
com12 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
81 |
80
|
3adant1 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
82 |
6 81
|
syl |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ) ) |
84 |
64 83
|
impbid |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ↔ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) |
85 |
84
|
ex |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ↔ 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ) |
86 |
85
|
pm5.32rd |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ↔ ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) ) |
87 |
5 86
|
syl5bb |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ↔ ( 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∧ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) ) ) ) |
88 |
87
|
rabbidva2 |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 2 ) ∧ ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } ) |
89 |
3 88
|
eqtrid |
⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → 𝐷 = { 𝑤 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ∣ ( ( 𝑤 prefix ( 𝑁 + 1 ) ) = 𝑊 ∧ { ( lastS ‘ 𝑊 ) , ( lastS ‘ 𝑤 ) } ∈ 𝐸 ) } ) |