Step |
Hyp |
Ref |
Expression |
1 |
|
wrdnfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ∈ Fin ) |
2 |
|
simpr |
⊢ ( ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) |
3 |
2
|
rgenw |
⊢ ∀ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ( ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) |
4 |
|
ss2rab |
⊢ ( { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ↔ ∀ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ( ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) → ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
5 |
3 4
|
mpbir |
⊢ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } |
6 |
5
|
a1i |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ⊆ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ) |
7 |
1 6
|
ssfid |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ∈ Fin ) |
8 |
|
wwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 WWalksN 𝐺 ) = { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ) |
9 |
|
df-rab |
⊢ { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } = { 𝑤 ∣ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } |
10 |
8 9
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 WWalksN 𝐺 ) = { 𝑤 ∣ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ) |
11 |
|
3anan12 |
⊢ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
12 |
11
|
anbi1i |
⊢ ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
13 |
|
anass |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) ) |
15 |
14
|
abbii |
⊢ { 𝑤 ∣ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } = { 𝑤 ∣ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) } |
16 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
17 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
18 |
16 17
|
iswwlks |
⊢ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
19 |
18
|
anbi1i |
⊢ ( ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
20 |
19
|
abbii |
⊢ { 𝑤 ∣ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } = { 𝑤 ∣ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } |
21 |
|
df-rab |
⊢ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } = { 𝑤 ∣ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) } |
22 |
15 20 21
|
3eqtr4i |
⊢ { 𝑤 ∣ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } = { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } |
23 |
10 22
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 WWalksN 𝐺 ) = { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ) |
24 |
23
|
eleq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 WWalksN 𝐺 ) ∈ Fin ↔ { 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) } ∈ Fin ) ) |
25 |
7 24
|
syl5ibr |
⊢ ( 𝑁 ∈ ℕ0 → ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) ) |
26 |
|
df-nel |
⊢ ( 𝑁 ∉ ℕ0 ↔ ¬ 𝑁 ∈ ℕ0 ) |
27 |
26
|
biimpri |
⊢ ( ¬ 𝑁 ∈ ℕ0 → 𝑁 ∉ ℕ0 ) |
28 |
27
|
olcd |
⊢ ( ¬ 𝑁 ∈ ℕ0 → ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ) |
29 |
|
wwlksnndef |
⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
30 |
28 29
|
syl |
⊢ ( ¬ 𝑁 ∈ ℕ0 → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
31 |
|
0fin |
⊢ ∅ ∈ Fin |
32 |
30 31
|
eqeltrdi |
⊢ ( ¬ 𝑁 ∈ ℕ0 → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
33 |
32
|
a1d |
⊢ ( ¬ 𝑁 ∈ ℕ0 → ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) ) |
34 |
25 33
|
pm2.61i |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |