Metamath Proof Explorer


Theorem wwlksnndef

Description: Conditions for WWalksN not being defined. (Contributed by Alexander van der Vekens, 30-Jul-2018) (Revised by AV, 19-Apr-2021)

Ref Expression
Assertion wwlksnndef ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) → ( 𝑁 WWalksN 𝐺 ) = ∅ )

Proof

Step Hyp Ref Expression
1 neq0 ( ¬ ( 𝑁 WWalksN 𝐺 ) = ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 2 wwlknbp ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) )
4 nnel ( ¬ 𝐺 ∉ V ↔ 𝐺 ∈ V )
5 nnel ( ¬ 𝑁 ∉ ℕ0𝑁 ∈ ℕ0 )
6 4 5 anbi12i ( ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) ↔ ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ) )
7 6 biimpri ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) )
8 7 3adant3 ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) )
9 ioran ( ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ↔ ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) )
10 8 9 sylibr ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) )
11 3 10 syl ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) )
12 11 exlimiv ( ∃ 𝑤 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) )
13 1 12 sylbi ( ¬ ( 𝑁 WWalksN 𝐺 ) = ∅ → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) )
14 13 con4i ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) → ( 𝑁 WWalksN 𝐺 ) = ∅ )