Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
⊢ ( ¬ ( 𝑁 WWalksN 𝐺 ) = ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2
|
wwlknbp |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
4 |
|
nnel |
⊢ ( ¬ 𝐺 ∉ V ↔ 𝐺 ∈ V ) |
5 |
|
nnel |
⊢ ( ¬ 𝑁 ∉ ℕ0 ↔ 𝑁 ∈ ℕ0 ) |
6 |
4 5
|
anbi12i |
⊢ ( ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) ↔ ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ) ) |
7 |
6
|
biimpri |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ) → ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) ) |
9 |
|
ioran |
⊢ ( ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ↔ ( ¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0 ) ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ) |
11 |
3 10
|
syl |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ) |
12 |
11
|
exlimiv |
⊢ ( ∃ 𝑤 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ) |
13 |
1 12
|
sylbi |
⊢ ( ¬ ( 𝑁 WWalksN 𝐺 ) = ∅ → ¬ ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) ) |
14 |
13
|
con4i |
⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ0 ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |