| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 2 |
1
|
iswwlksnon |
⊢ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } |
| 3 |
|
wwlksnfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
| 4 |
|
rabfi |
⊢ ( ( 𝑁 WWalksN 𝐺 ) ∈ Fin → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ∈ Fin ) |
| 5 |
3 4
|
syl |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ∈ Fin ) |
| 6 |
2 5
|
eqeltrid |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ∈ Fin ) |