Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnredwwlkn.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
1
|
wwlksnredwwlkn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) |
3 |
2
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) |
4 |
|
simpl |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ) |
5 |
4
|
adantl |
⊢ ( ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ∧ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) → ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ) |
6 |
|
fveq1 |
⊢ ( 𝑦 = ( 𝑊 prefix ( 𝑁 + 1 ) ) → ( 𝑦 ‘ 0 ) = ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) ) |
7 |
6
|
eqcoms |
⊢ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 → ( 𝑦 ‘ 0 ) = ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) → ( 𝑦 ‘ 0 ) = ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) ) |
9 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
10 |
9 1
|
wwlknp |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
11 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
12 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
13 |
|
nn0re |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℝ ) |
14 |
|
lep1 |
⊢ ( ( 𝑁 + 1 ) ∈ ℝ → ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) |
16 |
|
peano2nn0 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) ∈ ℕ0 ) |
17 |
16
|
nn0zd |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) + 1 ) ∈ ℤ ) |
18 |
|
fznn |
⊢ ( ( ( 𝑁 + 1 ) + 1 ) ∈ ℤ → ( ( 𝑁 + 1 ) ∈ ( 1 ... ( ( 𝑁 + 1 ) + 1 ) ) ↔ ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
19 |
12 17 18
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) ∈ ( 1 ... ( ( 𝑁 + 1 ) + 1 ) ) ↔ ( ( 𝑁 + 1 ) ∈ ℕ ∧ ( 𝑁 + 1 ) ≤ ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
20 |
11 15 19
|
mpbir2and |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( 1 ... ( ( 𝑁 + 1 ) + 1 ) ) ) |
21 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 1 ... ( ♯ ‘ 𝑊 ) ) = ( 1 ... ( ( 𝑁 + 1 ) + 1 ) ) ) |
22 |
21
|
eleq2d |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑁 + 1 ) ∈ ( 1 ... ( ( 𝑁 + 1 ) + 1 ) ) ) ) |
23 |
20 22
|
syl5ibr |
⊢ ( ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
25 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
26 |
24 25
|
jctild |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
27 |
26
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( ( 𝑁 + 1 ) + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
28 |
10 27
|
syl |
⊢ ( 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) ) |
33 |
|
pfxfv0 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑁 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
35 |
|
simprll |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) → ( 𝑊 ‘ 0 ) = 𝑃 ) |
36 |
8 34 35
|
3eqtrd |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) |
37 |
36
|
ex |
⊢ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 → ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
39 |
38
|
impcom |
⊢ ( ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ∧ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) |
40 |
|
simpr |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) |
41 |
40
|
adantl |
⊢ ( ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ∧ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) → { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) |
42 |
5 39 41
|
3jca |
⊢ ( ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) ∧ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) |
43 |
42
|
ex |
⊢ ( ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) ∧ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ) → ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) |
44 |
43
|
reximdva |
⊢ ( ( ( 𝑊 ‘ 0 ) = 𝑃 ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) → ( ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) |
45 |
44
|
ex |
⊢ ( ( 𝑊 ‘ 0 ) = 𝑃 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) ) |
46 |
45
|
com13 |
⊢ ( ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( 𝑊 ‘ 0 ) = 𝑃 → ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) ) |
47 |
3 46
|
mpcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( 𝑊 ‘ 0 ) = 𝑃 → ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) |
48 |
29 33
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
49 |
48
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( 𝑊 ‘ 0 ) = ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) ) |
50 |
49
|
adantl |
⊢ ( ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) → ( 𝑊 ‘ 0 ) = ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) ) |
51 |
|
fveq1 |
⊢ ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) → ( ( 𝑊 prefix ( 𝑁 + 1 ) ) ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
54 |
|
simpr |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) → ( 𝑦 ‘ 0 ) = 𝑃 ) |
55 |
54
|
adantr |
⊢ ( ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) |
56 |
50 53 55
|
3eqtrd |
⊢ ( ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) ) → ( 𝑊 ‘ 0 ) = 𝑃 ) |
57 |
56
|
ex |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( 𝑊 ‘ 0 ) = 𝑃 ) ) |
58 |
57
|
3adant3 |
⊢ ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( 𝑊 ‘ 0 ) = 𝑃 ) ) |
59 |
58
|
com12 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( 𝑊 ‘ 0 ) = 𝑃 ) ) |
60 |
59
|
rexlimdvw |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) → ( 𝑊 ‘ 0 ) = 𝑃 ) ) |
61 |
47 60
|
impbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( ( 𝑁 + 1 ) WWalksN 𝐺 ) ) → ( ( 𝑊 ‘ 0 ) = 𝑃 ↔ ∃ 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ( ( 𝑊 prefix ( 𝑁 + 1 ) ) = 𝑦 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( lastS ‘ 𝑦 ) , ( lastS ‘ 𝑊 ) } ∈ 𝐸 ) ) ) |