| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wwlktovf1o.d | 
							⊢ 𝐷  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝑋 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							wwlktovf1o.r | 
							⊢ 𝑅  =  { 𝑛  ∈  𝑉  ∣  { 𝑃 ,  𝑛 }  ∈  𝑋 }  | 
						
						
							| 3 | 
							
								
							 | 
							wwlktovf1o.f | 
							⊢ 𝐹  =  ( 𝑡  ∈  𝐷  ↦  ( 𝑡 ‘ 1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							wrdf | 
							⊢ ( 𝑡  ∈  Word  𝑉  →  𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( ♯ ‘ 𝑡 )  =  2  →  ( 0 ..^ ( ♯ ‘ 𝑡 ) )  =  ( 0 ..^ 2 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							feq2d | 
							⊢ ( ( ♯ ‘ 𝑡 )  =  2  →  ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉  ↔  𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 8 | 
							
								
							 | 
							2nn | 
							⊢ 2  ∈  ℕ  | 
						
						
							| 9 | 
							
								
							 | 
							1lt2 | 
							⊢ 1  <  2  | 
						
						
							| 10 | 
							
								
							 | 
							elfzo0 | 
							⊢ ( 1  ∈  ( 0 ..^ 2 )  ↔  ( 1  ∈  ℕ0  ∧  2  ∈  ℕ  ∧  1  <  2 ) )  | 
						
						
							| 11 | 
							
								7 8 9 10
							 | 
							mpbir3an | 
							⊢ 1  ∈  ( 0 ..^ 2 )  | 
						
						
							| 12 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉  ∧  1  ∈  ( 0 ..^ 2 ) )  →  ( 𝑡 ‘ 1 )  ∈  𝑉 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							mpan2 | 
							⊢ ( 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉  →  ( 𝑡 ‘ 1 )  ∈  𝑉 )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							biimtrdi | 
							⊢ ( ( ♯ ‘ 𝑡 )  =  2  →  ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉  →  ( 𝑡 ‘ 1 )  ∈  𝑉 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 )  →  ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉  →  ( 𝑡 ‘ 1 )  ∈  𝑉 ) )  | 
						
						
							| 16 | 
							
								4 15
							 | 
							mpan9 | 
							⊢ ( ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  →  ( 𝑡 ‘ 1 )  ∈  𝑉 )  | 
						
						
							| 17 | 
							
								
							 | 
							preq1 | 
							⊢ ( ( 𝑡 ‘ 0 )  =  𝑃  →  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  =  { 𝑃 ,  ( 𝑡 ‘ 1 ) } )  | 
						
						
							| 18 | 
							
								17
							 | 
							eleq1d | 
							⊢ ( ( 𝑡 ‘ 0 )  =  𝑃  →  ( { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋  ↔  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							biimpa | 
							⊢ ( ( ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 )  →  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 )  | 
						
						
							| 20 | 
							
								19
							 | 
							3adant1 | 
							⊢ ( ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 )  →  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantl | 
							⊢ ( ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  →  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							jca | 
							⊢ ( ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  →  ( ( 𝑡 ‘ 1 )  ∈  𝑉  ∧  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( 𝑤  =  𝑡  →  ( ( ♯ ‘ 𝑤 )  =  2  ↔  ( ♯ ‘ 𝑡 )  =  2 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  𝑡  →  ( 𝑤 ‘ 0 )  =  ( 𝑡 ‘ 0 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqeq1d | 
							⊢ ( 𝑤  =  𝑡  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ( 𝑡 ‘ 0 )  =  𝑃 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑤  =  𝑡  →  ( 𝑤 ‘ 1 )  =  ( 𝑡 ‘ 1 ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							preq12d | 
							⊢ ( 𝑤  =  𝑡  →  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  =  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) } )  | 
						
						
							| 28 | 
							
								27
							 | 
							eleq1d | 
							⊢ ( 𝑤  =  𝑡  →  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝑋  ↔  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  | 
						
						
							| 29 | 
							
								23 25 28
							 | 
							3anbi123d | 
							⊢ ( 𝑤  =  𝑡  →  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  𝑋 )  ↔  ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) ) )  | 
						
						
							| 30 | 
							
								29 1
							 | 
							elrab2 | 
							⊢ ( 𝑡  ∈  𝐷  ↔  ( 𝑡  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑡 )  =  2  ∧  ( 𝑡 ‘ 0 )  =  𝑃  ∧  { ( 𝑡 ‘ 0 ) ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							preq2 | 
							⊢ ( 𝑛  =  ( 𝑡 ‘ 1 )  →  { 𝑃 ,  𝑛 }  =  { 𝑃 ,  ( 𝑡 ‘ 1 ) } )  | 
						
						
							| 32 | 
							
								31
							 | 
							eleq1d | 
							⊢ ( 𝑛  =  ( 𝑡 ‘ 1 )  →  ( { 𝑃 ,  𝑛 }  ∈  𝑋  ↔  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  | 
						
						
							| 33 | 
							
								32 2
							 | 
							elrab2 | 
							⊢ ( ( 𝑡 ‘ 1 )  ∈  𝑅  ↔  ( ( 𝑡 ‘ 1 )  ∈  𝑉  ∧  { 𝑃 ,  ( 𝑡 ‘ 1 ) }  ∈  𝑋 ) )  | 
						
						
							| 34 | 
							
								22 30 33
							 | 
							3imtr4i | 
							⊢ ( 𝑡  ∈  𝐷  →  ( 𝑡 ‘ 1 )  ∈  𝑅 )  | 
						
						
							| 35 | 
							
								3 34
							 | 
							fmpti | 
							⊢ 𝐹 : 𝐷 ⟶ 𝑅  |