Step |
Hyp |
Ref |
Expression |
1 |
|
wwlktovf1o.d |
⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } |
2 |
|
wwlktovf1o.r |
⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } |
3 |
|
wwlktovf1o.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) |
4 |
|
wrdf |
⊢ ( 𝑡 ∈ Word 𝑉 → 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 ) |
5 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑡 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑡 ) ) = ( 0 ..^ 2 ) ) |
6 |
5
|
feq2d |
⊢ ( ( ♯ ‘ 𝑡 ) = 2 → ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 ↔ 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 ) ) |
7 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
8 |
|
2nn |
⊢ 2 ∈ ℕ |
9 |
|
1lt2 |
⊢ 1 < 2 |
10 |
|
elfzo0 |
⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) |
11 |
7 8 9 10
|
mpbir3an |
⊢ 1 ∈ ( 0 ..^ 2 ) |
12 |
|
ffvelrn |
⊢ ( ( 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 ∧ 1 ∈ ( 0 ..^ 2 ) ) → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) |
13 |
11 12
|
mpan2 |
⊢ ( 𝑡 : ( 0 ..^ 2 ) ⟶ 𝑉 → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) |
14 |
6 13
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑡 ) = 2 → ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) → ( 𝑡 : ( 0 ..^ ( ♯ ‘ 𝑡 ) ) ⟶ 𝑉 → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) ) |
16 |
4 15
|
mpan9 |
⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) → ( 𝑡 ‘ 1 ) ∈ 𝑉 ) |
17 |
|
preq1 |
⊢ ( ( 𝑡 ‘ 0 ) = 𝑃 → { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } = { 𝑃 , ( 𝑡 ‘ 1 ) } ) |
18 |
17
|
eleq1d |
⊢ ( ( 𝑡 ‘ 0 ) = 𝑃 → ( { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ↔ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
19 |
18
|
biimpa |
⊢ ( ( ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) → { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) |
20 |
19
|
3adant1 |
⊢ ( ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) → { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) |
21 |
20
|
adantl |
⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) → { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) |
22 |
16 21
|
jca |
⊢ ( ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) → ( ( 𝑡 ‘ 1 ) ∈ 𝑉 ∧ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
23 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑡 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑡 ) = 2 ) ) |
24 |
|
fveq1 |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 ‘ 0 ) = ( 𝑡 ‘ 0 ) ) |
25 |
24
|
eqeq1d |
⊢ ( 𝑤 = 𝑡 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑡 ‘ 0 ) = 𝑃 ) ) |
26 |
|
fveq1 |
⊢ ( 𝑤 = 𝑡 → ( 𝑤 ‘ 1 ) = ( 𝑡 ‘ 1 ) ) |
27 |
24 26
|
preq12d |
⊢ ( 𝑤 = 𝑡 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ) |
28 |
27
|
eleq1d |
⊢ ( 𝑤 = 𝑡 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
29 |
23 25 28
|
3anbi123d |
⊢ ( 𝑤 = 𝑡 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) ) |
30 |
29 1
|
elrab2 |
⊢ ( 𝑡 ∈ 𝐷 ↔ ( 𝑡 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑡 ) = 2 ∧ ( 𝑡 ‘ 0 ) = 𝑃 ∧ { ( 𝑡 ‘ 0 ) , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) ) |
31 |
|
preq2 |
⊢ ( 𝑛 = ( 𝑡 ‘ 1 ) → { 𝑃 , 𝑛 } = { 𝑃 , ( 𝑡 ‘ 1 ) } ) |
32 |
31
|
eleq1d |
⊢ ( 𝑛 = ( 𝑡 ‘ 1 ) → ( { 𝑃 , 𝑛 } ∈ 𝑋 ↔ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
33 |
32 2
|
elrab2 |
⊢ ( ( 𝑡 ‘ 1 ) ∈ 𝑅 ↔ ( ( 𝑡 ‘ 1 ) ∈ 𝑉 ∧ { 𝑃 , ( 𝑡 ‘ 1 ) } ∈ 𝑋 ) ) |
34 |
22 30 33
|
3imtr4i |
⊢ ( 𝑡 ∈ 𝐷 → ( 𝑡 ‘ 1 ) ∈ 𝑅 ) |
35 |
3 34
|
fmpti |
⊢ 𝐹 : 𝐷 ⟶ 𝑅 |