Step |
Hyp |
Ref |
Expression |
1 |
|
wwlktovf1o.d |
⊢ 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) } |
2 |
|
wwlktovf1o.r |
⊢ 𝑅 = { 𝑛 ∈ 𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 } |
3 |
|
wwlktovf1o.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 ‘ 1 ) ) |
4 |
1 2 3
|
wwlktovf |
⊢ 𝐹 : 𝐷 ⟶ 𝑅 |
5 |
|
fveq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) |
6 |
|
fvex |
⊢ ( 𝑥 ‘ 1 ) ∈ V |
7 |
5 3 6
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 ‘ 1 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑡 = 𝑦 → ( 𝑡 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) |
9 |
|
fvex |
⊢ ( 𝑦 ‘ 1 ) ∈ V |
10 |
8 3 9
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 ‘ 1 ) ) |
11 |
7 10
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) |
12 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑥 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑥 ) = 2 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 0 ) = ( 𝑥 ‘ 0 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑥 ‘ 0 ) = 𝑃 ) ) |
15 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 1 ) = ( 𝑥 ‘ 1 ) ) |
16 |
13 15
|
preq12d |
⊢ ( 𝑤 = 𝑥 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ) |
17 |
16
|
eleq1d |
⊢ ( 𝑤 = 𝑥 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) |
18 |
12 14 17
|
3anbi123d |
⊢ ( 𝑤 = 𝑥 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ) |
19 |
18 1
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ) |
20 |
|
fveqeq2 |
⊢ ( 𝑤 = 𝑦 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ ( ♯ ‘ 𝑦 ) = 2 ) ) |
21 |
|
fveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ‘ 0 ) = 𝑃 ↔ ( 𝑦 ‘ 0 ) = 𝑃 ) ) |
23 |
|
fveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) |
24 |
21 23
|
preq12d |
⊢ ( 𝑤 = 𝑦 → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } = { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ) |
25 |
24
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ↔ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) |
26 |
20 22 25
|
3anbi123d |
⊢ ( 𝑤 = 𝑦 → ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) ↔ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) |
27 |
26 1
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐷 ↔ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) |
28 |
|
simpr1 |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) → ( ♯ ‘ 𝑥 ) = 2 ) |
29 |
|
simpr1 |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → ( ♯ ‘ 𝑦 ) = 2 ) |
30 |
29
|
eqcomd |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → 2 = ( ♯ ‘ 𝑦 ) ) |
31 |
28 30
|
sylan9eq |
⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
33 |
|
simpr2 |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) → ( 𝑥 ‘ 0 ) = 𝑃 ) |
34 |
|
simpr2 |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → ( 𝑦 ‘ 0 ) = 𝑃 ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) → 𝑃 = ( 𝑦 ‘ 0 ) ) |
36 |
33 35
|
sylan9eq |
⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) |
39 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑥 ) ) = ( 0 ..^ 2 ) ) |
40 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
41 |
39 40
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝑥 ) ) = { 0 , 1 } ) |
42 |
41
|
raleqdv |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
43 |
|
c0ex |
⊢ 0 ∈ V |
44 |
|
1ex |
⊢ 1 ∈ V |
45 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 0 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 0 ) ) |
47 |
45 46
|
eqeq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
48 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 1 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 1 ) ) |
50 |
48 49
|
eqeq12d |
⊢ ( 𝑖 = 1 → ( ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) |
51 |
43 44 47 50
|
ralpr |
⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) |
52 |
42 51
|
bitrdi |
⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) ) |
53 |
52
|
3ad2ant1 |
⊢ ( ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) ) |
54 |
53
|
ad3antlr |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) ) ) |
55 |
37 38 54
|
mpbir2and |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) |
56 |
|
eqwrd |
⊢ ( ( 𝑥 ∈ Word 𝑉 ∧ 𝑦 ∈ Word 𝑉 ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) ) |
57 |
56
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) ) |
58 |
57
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) ) |
59 |
32 55 58
|
mpbir2and |
⊢ ( ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) ∧ ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ) → 𝑥 = 𝑦 ) |
60 |
59
|
ex |
⊢ ( ( ( 𝑥 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑥 ) = 2 ∧ ( 𝑥 ‘ 0 ) = 𝑃 ∧ { ( 𝑥 ‘ 0 ) , ( 𝑥 ‘ 1 ) } ∈ 𝑋 ) ) ∧ ( 𝑦 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑦 ) = 2 ∧ ( 𝑦 ‘ 0 ) = 𝑃 ∧ { ( 𝑦 ‘ 0 ) , ( 𝑦 ‘ 1 ) } ∈ 𝑋 ) ) ) → ( ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) → 𝑥 = 𝑦 ) ) |
61 |
19 27 60
|
syl2anb |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) → 𝑥 = 𝑦 ) ) |
62 |
11 61
|
sylbid |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
63 |
62
|
rgen2 |
⊢ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
64 |
|
dff13 |
⊢ ( 𝐹 : 𝐷 –1-1→ 𝑅 ↔ ( 𝐹 : 𝐷 ⟶ 𝑅 ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
65 |
4 63 64
|
mpbir2an |
⊢ 𝐹 : 𝐷 –1-1→ 𝑅 |